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Abstract 
The aim of this work is to present a strut-and-tie model for design of reinforced concrete pile caps. The model considers 
both failure by crushing of the compressed struts and by yielding of the tie reinforcement. Unlike some traditional mod-
els, crushing of the compressed concrete is not checked at the section in direct contact with the column base (col-
umn/pile cap interface). In this work, crushing of concrete is verified in a section at a certain depth inside the pile cap. 
Thus, this verification is replaced by determining the height of the nodal zone at the top of the pile cap required not to 
cause crushing of the struts. An iterative algorithm is used for this purpose. Comparison with a large number of experi-
mental results available in the literature demonstrates the effectiveness of the proposed model for the design of concrete 
pile caps. Numerical examples of practical use of the model are also presented. 
 

 
1. Introduction 

Codes for reinforced concrete structures consider two 
different methods for design of pile caps. In the first 
method, the pile cap is analyzed as a beam or a slab 
supported on piles. The main reinforcement is calcu-
lated as in a bending problem, for the bending moment 
in a reference section located in the column. Shear 
strength is checked using the same criterion as in beams. 
Punching shear is verified as in slabs (ACI 318-14 
Building Code 2014; Japanese Code JSCE 2010; Span-
ish Code EHE 2011). Usually, this sectional method is 
employed for flexible pile caps, where the distance be-
tween the axis of any pile to the column face is more 
than twice the height of the pile cap. 

In order to avoid the necessity of one-way shear rein-
forcement, shear in a reference section is limited by the 
same formula used for thin slabs. The shear resistance 
depends on the compressive strength of concrete and 
reinforcement ratio (ACI 318-14; JSCE 2010). Some 
design codes (EHE 2011; Eurocode EC2 2014) also 
consider the slab thickness in the evaluation of the shear 
resistance. Usually, the reference section used to calcu-
late the factored shear force is taken at a distance d  
from the column face, where d  is the effective depth of 
the pile cap. 

Failure by punching shear is checked in a control pe-
rimeter located at a distance 2d  from the column face 
(ACI 318-14; FIB Model Code 2010), or at a distance 
2d  (EHE 2011; EC2 2014). There is a lack of uniform-
ity with respect to the location of the control perimeter 
as well as the value of punching shear resistance. Addi-
tional checks on the perimeter of the column cross sec-
tion and around the piles may also be needed.  

In the second method, pile caps are designed using a 
model of spatial truss, also called strut-and-tie model 
(Adebar and Zhou 1996; Brown et al. 2006; Chantelot 
and Mathern 2010). The verifications aim to limit the 
compressive stresses in the concrete struts so as to pre-
vent a brittle failure. If the struts are idealized as pris-
matic or uniformly tapered compression members (ACI 
318-14), it is usually sufficient to limit the compressive 
stresses in the nodes of the truss, located near the piles 
and near the column. Then, the tie reinforcement is cal-
culated. This method is employed for rigid pile caps, 
where the distance between the axis of any pile to the 
column face is less than twice the height of the pile cap 
(ACI 318-14; EHE 2011). 

Figure 1 shows the strut-and-tie model usually em-
ployed for two-pile caps. The column is subjected to a 
centered load and has a rectangular cross section. 

In the classical model shown in Fig. 1, the two struts 
go from the column base, on the top of the pile cap, to-
wards the axes of piles at the reinforcement level. The 
design load dN  is distributed equally to the two struts, 
being applied at a distance 0.25a  from the column axis, 
where a  is the dimension of the column cross section in 
the direction of the piles. 
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Fig. 1 Classical strut-and-tie model for two-pile caps.
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The inclination of the compressive struts is calculated 
with the relationship tan o d rθ = , where 

0.5 0.25or l a= −  and ol  is the distance between the 
piles axes. The compressive force on each strut is 

0.5 sinc d oF N θ=  and the force on the tie is 
0.5 cotsd d oR N θ= . The tie reinforcement area is calcu-

lated as s sd ydA R f= , where ydf  is the design yield 
strength of the steel.  

Compressive stresses in the struts are evaluated on 
nodes 1 and 2, below the column and over the piles, 
respectively. These stresses are given by 

1 2sin
d

c
c o

N
A

σ
θ

=  (1) 

2 22 sin
d

c
p o

N
A

σ
θ

=  (2) 

where cA  is the area of the column cross section and 
pA  is the area of the pile cross section.  
Finally, these stresses are compared with a concrete 

effective strength ,cd eff  to ensure safety against crush-
ing of the struts (Oliveira et al. 2014; Munhoz 2014). 
This effective strength depends on the number of piles 
(Blévot and Frémy 1967). It is usually adopted 

, 1.2cd ef cdf f=  for two pile caps, , 1.5cd ef cdf f=  for three 
pile caps, and , 1.8cd ef cdf f=  for four pile caps (Munhoz 
2014), where cdf  is the design value of the uniaxial 
compressive strength of concrete. 

This traditional model, despite being based on tests 
by Blévot and Frémy (1967), has two inconsistencies. 
The first is due to the calculation of the stress 2cσ  using 
equation (2), which considers the actual area pA  of the 
pile cross section. This stress would be correct if the 
distance d ′  between the reinforcement axis and the 
bottom face of the pile cap was null. However, as 

0d ′ >  there is a dispersion of the contact stresses up to 
the level of reinforcement, with a consequent reduction 
of 2cσ , as shown in Fig. 4. Thus, a way to reduce the 
strut stress consists of distributing the tie reinforcement 
in several layers, which increases d ′ . Of course, this 
reduces the effective depth d , demanding greater steel 
area for the tie. 

The other inconsistency refers to the stress 1cσ  at the 
column base. This stress is correct if the column rein-
forcement is not extended into the pile cap, which is not 
the procedure used in practice. However, even in this 
unusual case, there will be an increase in bearing 
strength. 

Since the column reinforcement bars penetrates until 
the bottom of the pile cap, or dowel bars are used, the 
design load is progressively transferred by adherence 
and, mainly, through the amplification of the com-
pressed area inside the pile cap (Fusco 1995). Indeed, at 
the column/pile cap interface, only the load 

dc d dsN N N= −  is transferred immediately to the con-
crete of the pile cap, where dsN  is resisted by the col-
umn reinforcement. Failure due to bearing stress only 

occurs if the concrete of the pile cap has a much lower 
resistance that the concrete of the column.  

Equation (1) imposes a strong restriction in the value 
of the maximum load of the column. For example, for 
two pile caps, one must have 21.2 sind c cd oN A f θ≤ . For 

45o
oθ =  results 0.6d c cdN A f≤ , regardless of the col-

umn reinforcement ratio. This causes a major limitation 
in the column design. 

This study aims to present an alternative model for 
design of rigid pile caps, eliminating the inconsistencies 
above mentioned. The central idea of the model follows 
the previous work of Fusco (1995). However, this paper 
presents an innovative way of calculating the depth of 
the nodal zone at the base of the column. The safety of 
the proposed model is demonstrated through the analy-
sis of a large number of pile caps tested by other authors. 
Due to the importance of this structural element it is 
recommended that the design be conservative, which is 
the case of the proposed model. The study is limited to 
cases of static loading. The struts are idealized as pris-
matic or uniformly tapered compression members. Bot-
tle-shaped struts are not considered. 

 
2. Proposed model for design of pile caps 

In the proposed model of this study, it is considered that 
the struts converge to a horizontal plane situated at a 
distance x  from the top of the pile cap. In this plane, 
the vertical stress vdσ  has been reduced enough not to 
cause crushing of the struts. The compressive stress cσ  
in the strut near the top of the pile cap is given by 

2sinc vdσ σ θ= , where θ  is the strut inclination. The 
inclination angle of the strut must satisfy the relation-
ship tan 1 2θ ≥ , in other words 26.6θ ≥ ° . ACI Build-
ing Code 2014 (ACI 318-14) requires 25θ ≥ ° . The 
height of the pile cap is chosen to ensure this minimum 
inclination for the concrete struts. 

In order to avoid crushing of the struts near the top of 
the pile cap, it is necessary to limit 1c cdfσ ≤ , where 

1cdf  is the design compressive strength of concrete in 
this zone. Therefore, the intended horizontal plane is 
one where 2

1sinvd cdfσ θ≤ , as shown in Fig. 2.  

 
Fig. 4 Proposed strut-and-tie model for two-pile caps.
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As indicated in Fig. 2, the region 1 with depth equal 
to x , located under the column, is nothing more than an 
extension of the column within the pile cap. In this re-
gion the column has an enlarged base. Due to the con-
finement provided by the large concrete cover, concrete 
is subjected to a triaxial compression state (for pile caps 
on several piles), or a biaxial compression state (for 
two-pile caps). Thus, there is a significant increase in 
the uniaxial compressive strength cf , with no risk of 
crushing in this zone even if the concrete of the pile cap 
has a strength somewhat lower than the concrete of the 
column. 

Usually, region 1 is referred to as CCC nodal zone 
because in a two-dimensional problem it receives three 
compressive forces. Several design codes provide limits 
to the compressive stress in this nodal zone. For an un-
confined node, the Eurocode EC2 (2014) adopts 

1 1.0(1 / 250)cd ck cdf f f= − , where ckf  is the characteris-
tic strength in MPa and cdf  is the uniaxial design com-
pressive strength of concrete. According to this equation, 
it is found that 1 0.85cd cdf f≥  if 37.5ckf ≤ MPa. The 
limit 0.85 cdf  for the compressive stress is also adopted 
by ACI (2014), JSCE (2010) and Canadian Code CSA 
(2014). For triaxially compressed nodes the value of 

1cdf  can be increased. So, in this work it is adopted 
1 0.85cd cdf f=  for two-pile caps and 1cd cdf f=  for pile 

caps on more than two piles, which is conservative as 
shown by comparison with experimental results.  

Figure 3 shows magnified areas under the column at 
a depth x  from the top of the pile cap. The column has 
rectangular cross section with sides a  and b . For two-
pile caps, it is considered that the amplification only 
occurs in the direction of the piles. As a simplification 
for pile caps on three or more piles, it is assumed an 
expansion of the area in both directions as shown in Fig. 
3. 

Figure 4 shows the proposed strut-and-tie model.  
The inclination of the struts is given by 

tan ( 0.5 ) /d x rθ = − , where 0.5 0.25or l a= − . In the 

traditional model shown in Fig. 1, the strut inclination is 
tan o d rθ = , with the strut going to the top of the pile 
cap. Therefore, there is the relationship 

0.5tan tan 1o
x

d
θ θ ⎛ ⎞= −⎜ ⎟

⎝ ⎠
 (3) 

Thus, for a given value of x  it is possible to calculate 
the inclination of the compressive struts and the magni-
fied area vA  under the column as shown in Fig. 3. The 
vertical stress in the magnified area is given by 

vd d vN Aσ =  and is a function of x . Imposing the con-
dition 2

1sinvd cdfσ θ= , x  can be obtained through an 
iterative process.  

Defining the relative normal force  

d

cd

N
abf

ν =  (4) 

and imposing the condition 2
1sinvd cdfσ θ= , the follow-

ing expressions are obtained for x , according to the 
number of piles.  
Two-pile caps ( 1 0.85cd cdf f= ): 

The magnified area is given by 

( )2 cotvA b a x θ= +  (5) 

as shown in Fig. 3. 
Considering the equations (4) and (5), the vertical 

stress vd d vN Aσ =  in the magnified area is given by 

 
( )2 cot

cd
vd

abf
b a x

ν
σ

θ
=

+
 (6) 

 
Fig. 2 Verification of the concrete struts under the col-
umn. Fig. 3 Magnified area under the column.
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Imposing the condition 2
1sinvd cdfσ θ= , where 

1 0.85cd cdf f= , it results 

20.85sin
1.7 sin cos

x
a

ν θ
θ θ

−
=      (7) 

Pile caps with more than two piles ( 1cd cdf f= ): 
The magnified area is given by 

( )( )2 cot 2 cotvA a x b xθ θ= + +  (8) 

as shown in Fig. 3. 
Considering the equations (4) and (8), the vertical 

stress vd d vN Aσ =  in the magnified area is given by 
 

( )( )2 cot 2 cot
cd

vd
abf

a x b x
ν

σ
θ θ

=
+ +

 (9) 

Imposing the condition 2
1sinvd cdfσ θ= , where 

1cd cdf f= , it results 

( ) ( ) ( )2 2 21 sin 1 sin 4 sin

4 cos
x
a

λ θ λ θ λ ν θ

θ

− + + + + −
=  (10) 

where b aλ =  is the ratio between the sides of the col-
umn cross section. 

These equations can only be solved iteratively. For 
this purpose, the following procedure is adopted:  

Step 1: Assume 0x =  and calculate the angle oθ θ=  
through the relationship tan o d rθ = . 

Step 2: Compute x  by means of equations (7) or (10), 
as appropriate. If 0x ≤ , the solution is 0x = , indicat-
ing that the struts can converge to the top of the pile cap, 
as in the classical model. If 0x > , go to the next step. 

Step 3: With the value of x  obtained in the previous 
step, compute a new angle θ  by means of the equation 
(3). With this value θ , calculate the new value of x  
through the equations (7) or (10). Proceed iteratively 
until convergence of x . The adopted convergence crite-
rion is: 1 0.01j j jx x x−− < , where 1jx −  and jx  are the 
values obtained in two successive iterations. 

To ensure a minimum ductility and prevent brittle 
failure, the depth x  of the horizontal plane obtained 
from equations (7) and (10) should be limited. Thus, the 
relationship x d  is restricted to the values 0.45x d ≤  
(for 35ckf ≤  MPa) and 0.35x d ≤  (for 35ckf >  MPa), 
according to CEB-FIP Model Code (1993) recommen-
dations. Similarly, the angle of inclination of the struts 
is limited to 26.6θ ≥ ° . If these restrictions are not met, 
the effective depth d  of the pile cap and/or the dimen-
sions of the column cross section must be increased. 
The same should be done if the iterative process does 
not converge. 

To avoid the iterative process, it may be adopted a 
minimum value for the angle θ , computing x  by 
means of equations (7) or (10). Fusco (1995), for exam-
ple, adopts 26.6θ = °  as the minimum strut inclination. 
This procedure simplifies the structural design but it can 

be uneconomical, particularly, for two-pile caps. Other 
authors (Jimenez Montoya et. al 2000; Calavera 2000) 
consider a fixed value for x , such as 0.30x d= , and 
the strut inclination θ  is obtained from the equation (3). 
This value of x  can be excessive if the column is not 
heavily loaded, and the solution is uneconomical. Any-
way, the proposed iterative process involves simple cal-
culations as well as converges very quickly, being the 
recommended solution. 

If the column transmits a bending moment to the pile 
cap, the relative normal force ν  must be calculated for 
an equivalent load de dN N> . As a simplification, one 
can consider that deN  is equal to the number of piles 
multiplied by the design reaction of the most loaded pile 
(Santos et al. 2015). 

Once x  is known, the lever arm 0.5Z d x= −  is de-
finied as shown in Fig. 4. The tie steel area is calculated 
as s sd ydA R f= , where 0.5 cotsd dR N θ=  and 

( )cot 0.5 0.25ol a Zθ = − . Therefore, 
( )0.5 0.5 0.25d o

s
yd

N l a
A

Zf
−

=  (11) 

This equation may be written as 
d

s
yd

M
A

Zf
=  (12) 

where dM  is the design bending moment in a refer-
ence section located at a distance 0.25a  behind the col-
umn face caused by the pile reaction. 

The pile reactions are obtained considering the pile 
cap as a rigid body and each pile is modeled as a spring 
element. If the piles are loaded unequally due to the 
eccentricity of the force dN , it must be considered the 
one that causes the largest value of dM  in the reference 
section. The model may be used to calculate the rein-
forcement of pile caps supported on several piles. In 
order to do this, just calculate the reaction of each pile 
and determine the maximum bending moment in the 
reference section. This bending moment is calculated 
considering the reactions of all piles located at the same 
side of the analyzed section. 

Figure 5 indicates the sections for calculation of the 
reinforcement in two orthogonal directions, for a pile 
cap with many piles. 

The reinforcement in direction 1 is calculated for the 
bending moment in the section S1, caused by the reac-
tions of all piles located on the right of this section. If 

Fig. 5 Reference sections for calculation of the rein-
forcement.
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the piles on the left cause a higher bending moment, one 
should consider the section S1 located in this side. The 
reinforcement in direction 2 is calculated for the bend-
ing moment in the section S2, in a similar way. The re-
inforcement in each direction should be concentrated in 
the alignment of the piles. Additional reinforcement 
placed between the piles may be required. 

The strut stress at node 2 on the pile is given by 

2 2sin
de

c
amp

F
A

σ
θ

=  (13) 

where deF  is the design pile reaction, amp pA kA=  is 
the amplified area on the pile and k  is a factor that 
takes into account the spreading of the contact stresses 
to the centroid of the reinforcement. 

For two-pile caps subjected to a centered load as 
shown in Fig. 4, 0.5de dF N= . If the piles are unequally 
loaded, one should determine the node where 2cσ  is 
maximum.  

It is assumed that the contact stresses on the piles 
spread at 45 degree angles in all directions, according to 
the recommendations of EC2 (2014). Thus, the coeffi-
cient k  is given by 

2
2 '1

p

dk
φ

⎛ ⎞
= +⎜ ⎟⎜ ⎟
⎝ ⎠

 (14) 

where pφ  is the diameter of the pile cross section. 
For two-pile caps, the spreading occurs only in the di-

rection of the piles and 1 2 pk d φ′= + . If it is necessary 
to consider the bidirectional amplification given in 
equation (14) to avoid crushing of the strut, transverse 
reinforcement is required to restraint vertical splitting 
on the pile. This can be modeled using a transverse 
strut-and-tie model. The area of this transverse rein-
forcement is given by 0.25st de ydA F f= . This rein-
forcement is not necessary for pile caps with more 
than two piles. 

For piles of square section, pφ  is the side of the cross 
section. In all cases, it is recommended to limit 4k ≤ . 

The nodal zone over the pile is referred to as CCT 
nodal zone because it receives two struts and one tie. In 
order to avoid crushing of the struts it is necessary to 
limit 2 2c cdfσ ≤ . Here there is no consensus about the 
limit to the compressive stress 2cdf , as shown below:  
ACI 318-14 (2014): 2 0.68cd cdf f=  
JSCE Code (2010): 2 0.68cd cdf f=  
Canadian Code CSA (2014): 2 0.70cd cdf f=  
Spanish Code EHE (2011): 2 0.70cd cdf f=  

Eurocode EC2 (2014): 2 0.85 1
250

ck
cd cd

f
f f⎛ ⎞= −⎜ ⎟

⎝ ⎠
 

FIB Model Code (2010): 
1 3

2
300.50cd cd

ck

f f
f

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 

CEB-FIP Model Code (1993): 2 0.60 1
250

ck
cd cd

f
f f= −⎛ ⎞

⎜ ⎟
⎝ ⎠

 

Figure 6 shows the variation of 2cdf  with the charac-
teristic strength ckf  according to these standards, con-
sidering 1.5cd ckf f= . Expressions of EHE, JSCE and 
Canadian Code were not plotted because they are simi-
lar to the ACI equation. As can be observed, expressions 
of CEB and FIB provide very similar values to 2cdf . 
Equations of ACI and EC2 provide the highest values. 
Therefore, conservatively, it is recommended to adopt 
the expressions of FIB or CEB. 

Thus, in this work it is adopted 

2 0.60 1
250

ck
cd cd

f
f f⎛ ⎞= −⎜ ⎟

⎝ ⎠
  (15) 

according to CEB-FIP Model Code (1993) recommen-
dations. 

 
3. Comparison with experimental results 

In order to demonstrate the validity of the proposed 
model, 138 pile caps tested by other authors have been 
analized. These experimental results include 37 two-pile 
caps, 21 three-pile caps and 80 four-pile caps. All pile 
caps were subjected to a centered load. The columns 
have square or rectangular cross section. The pile sec-
tions can be square, rectangular or circular. Concrete 
compressive strength cf  based on tests of cylinders 
varies from 13.2 MPa to 49.3 MPa. 

Table 1 shows summary information about the pile 
caps. Full details may be obtained in references listed in 
the table. For four-pile caps, the complete data may be 
obtained in Souza et al. (2009). 

When carrying the structural design, the design load 
dN  is given by d f kN Nγ= , where kN  is the character-

istic load and 1fγ >  is a partial safety factor. Design 
compressive strength of concrete is cd ck cf f γ= , where 

ckf  is the characteristic strength and 1cγ >  is other 
partial safety factor. Finally, design yield strength of 

 
Fig. 6 Strength of CCT nodal zone according to different 
design codes. 
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reinforcement is yd yk sf f γ= , where ykf  is the charac-
teristic yield strength and 1sγ >  is a third partial safety 
factor. 

When comparing experimental results with those ob-
tained through a theoretical model, the partial safety 
factors should be considered equal to 1.0 . Thus, design 
strength and characteristic strength of materials are con-
sidered equal to their experimental values. So, when 
using the theoretical model, it should be adopted 

ck cf f= ; cd cf f= ; yd yf f= . The purpose of this analy-
sis is to compare the experimental failure load ,expuP  
with the theoretical failure load ,u teoP  without taking 
into account the partial safety factors. The ratio 

, ,expu teo uR P P=  is a measure of validity of the model. If 
1R ≤ , it means that the model is safe because it pro-

vides a smaller failure load than that observed experi-
mentally. That is, the theoretical model underestimates 
the structural resistance, as desirable. Conversely, 1R >  
indicates that the model overestimates the structural 
load capacity. In this case, the model error may be cov-
ered by the partial safety factors if R  is not much 
greater than 1. 

The model provides two failure modes: crushing of 
the compressive struts on the piles and yielding of the 
reinforcement. Furthermore, to avoid concrete crushing 
at the column base, it is considered the lever arm 

0.5Z d x= − , with x  being the depth of the horizontal 
plane where the vertical stress vdσ  is equal to 

2
1sin cdfθ . 

To determine the theoretical failure load ,u teoP , is em-
ployed an incremental process for the load dN . For 
each value of dN , it is determined the depth x  of the 
horizontal plane with the iterative algorithm presented 
previously. Then it is verified the compressive stress in 
the strut on the pile with use of the equations (13) to 
(15). Finally, the tensile force in the tie, sdR , is com-
pared with its strength s ydA f . If the rupture does not 

occur for any of these two failure modes, the load is 
increased to find ,u teoP . 

The amplified area on the pile is given by amp pA kA= , 
where pA  is the area of the pile cross-section and k  is 
given by equation (14). However, it is necessary to en-
sure that the amplified area do not fall out of the pile 
cap. 

The inclination of the compressive struts is given by 
tan Z rθ = , where 0.5Z d x= − . For pile caps on 
more than two piles, r  is the horizontal projection of 
the strut coming out of a point with coordinates 
( )0.25 ; 0.25a b  within the column and goes to the far-
thest pile. 

 
Two-pile caps 

Figure 7 shows the relationship between experimen-
tal failure loads ,expuP  and theoretical failure loads ,u teoP  
for 37 two-pile caps. As it can be observed, the theoreti-
cal failure load predicted by the model is smaller than 
the experimental failure load for most of the tests. It 
should be noted that in the theoretical model the partial 
safety factors for materials were not included, i.e., it 
was considered cd cf f=  and yd yf f= . Therefore, it can 
be ensured that the model will provide a conservative 
design. 

Figure 8 shows the histogram of the ratio 
, ,expu teo uR P P=  between the theoretical failure load, 

,u teoP , and the experimental failure load, ,expuP . 
The mean value of R  is 0.91mR =  and the standard 

deviation is 0.08Rσ = . The 95th percentile is given by 
,sup 1.645 1.04k m RR R σ= + = , which indicates a very 

low probability of the model to be nonconservative, 
even without inclusion of the partial safety factors fγ , 

cγ  and sγ . Thus, during the structural design these par-
tial safety factors will cover handily small errors against 
safety that may occur. 

 
Three-pile caps 

Figure 9 shows the relationship between experimen-
tal failure loads ,expuP  and theoretical failure loads ,u teoP  
for 21 three-pile caps. As it can be observed, the theo-
retical failure load predicted by the model is smaller 
than the experimental failure load for all pile caps tested.  

Figure 10 shows the histogram of the ratio 
, ,expu teo uR P P=  for the analyzed three-pile caps. 

As seen in Fig. 10, 1R <  has resulted for all 21 pile 
caps. The 95th percentile is given by 

,sup 1.645 0.85k m RR R σ= + = . 
 

Four-pile caps 
Figure 11 shows the relationship between experimen-

tal failure loads ,expuP  and theoretical failure loads ,u teoP  
for 80 four-pile caps. As it can be observed, the theo-
retical failure load predicted by the model is smaller 
than the experimental failure load for most of the tests. 

Figure 12 shows the histogram of the ratio 
, ,expu teo uR P P=  for the analysed four-pile caps. The 

95th percentile is given by ,sup 1.645 1.13k m RR R σ= + = . 

Table 1 Pile caps used for checking the model. 

Author 
(Year) 

Number 
of pile 
caps 

Number 
of piles 

Pile 
section 

cf  MPa 
minimum 

cf  MPa
maximum

Munhoz 
(2014) 11 2 Square 32.8 33.9 

Mautoni 
(1972) 20 2 rectangular 19.5 32.3 

Blévot 
(1967) 6 2 Square 23.6 47.0 

Blévot 
(1967) 12 3 Square 17.7 37.4 

Miguel 
(2000) 9 3 Circular 24.5 40.3 

Blévot 
(1967) 31 4 Square 13.2 49.3 

Clarke 
(1973) 13 4 Circular 22.5 43.7 

Suzuki 
(1998) 19 4 Square 18.9 30.9 

Suzuki 
(1999) 17 4 Square 25.6 30.9 
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Fig. 7 Relationship between the experimental failure load 
and the theoretical failure load for two-pile caps. 

 
Fig. 11 Relationship between the experimental failure 
load and the theoretical failure load for four-pile caps.

 
Fig. 10 Histogram for three-pile caps. 

 
Fig. 8 Histogram for two-pile caps. 

 
Fig. 9 Relationship between the experimental failure load 
and the theoretical failure load for three-pile caps. 

 
Fig. 12 Histogram for four-pile caps. 
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  Table 2 indicates the failure modes detected with the 
proposed model and the mean values mR  and the char-
acteristic values ,supkR  of the relationship 

, ,expu teo uR P P= .  
 

4. Numerical examples 

When employing the model for the design of pile caps, 
it is necessary to consider the partial safety factors. The 
EC2 (2014), for example, adopts 1.50cγ =  for concrete 
and 1.15sγ =  for steel for persistent and transient de-
sign situations. Moreover, the load factor fγ  depends 
on the combination of actions considered. For persistent 
and transient design situations, EN 1990 (2009) adopts 
the values 1.35 for permanent actions and 1.50 for vari-
able actions. 
 
Example 1:  
The proposed model is used to calculate the two-pile 
cap shown in Fig. 13. 
 
Additional data: 

1600dN = kN; 30ckf = MPa; 500ykf =  MPa 
Design strengths:  

30 1.5 20cdf = = MPa (= 2 kN/cm2)  
500 1.15 435ydf = = MPa (= 43.5 kN/cm2) 

Relative normal force: 1600 0.89
30 30 2

d

cd

N
abf x x

ν = = =  

0.5 0.25 0.5 90 0.25 30 37.5or l a x x= − = − = cm 
48tan 52

37.5
o

o o
d
r

θ θ= = → =  

Table 3 shows the results of the iterative process to 
find x , using the equation (7). 
Thus: 15.36 cm;x =  0.32 0.45;x d = <  

47.07 26.6θ = ° > °  
Lever arm: 0.5 48 0.5 15.36 40.32Z d x x= − = − = cm 

Tie steel area: 0.5 1600 37.5 17.10
40.32 43.5s

x xA
x

= = cm2 

Strut verification on the pile: 

2 0.60 1 10.56
250

ck
cd cd

f
f f⎛ ⎞= − =⎜ ⎟

⎝ ⎠
MPa 

0.5 800de dF N= = kN (pile reaction) 
707pA = cm2 (pile cross section area) 

2 2 71 1 1.47
30p

d xk
φ
′

= + = + =  (considering unidirectional 

spreading)  
1039amp pA kA= = cm2 (magnified area on the pile) 

2 2 2

800 1.44
sin 1039sin 47.07
de

c
amp

F
A

σ
θ

= = = kN/cm2 

( 2 14.4cσ = MPa) 
Since 2 2c cdfσ > , it is necessary to consider the bidirec-
tional spreading. 

2 22 2 71 1 2.15 4
30p

d xk
φ

⎛ ⎞′ ⎛ ⎞= + = + = <⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
(considering 

bidirectional spreading) 
1520amp pA kA= = cm2 (magnified area on the pile) 

2 2 2

800 0.98
sin 1520sin 47.07
de

c
amp

F
A

σ
θ

= = = kN/cm2 

( 2 9.8cσ = MPa) 
Since 2 2c cdfσ < , the strut safety is ensured. 

Transverse reinforcement on the piles:  
0.25 0.25 800 4.60

43.5
de

st
yd

F xA
f

= = = cm2. 

 
Design with the classical method: 
Effective concrete strength:  

, 1.2 2.40cd ef cdf f= = kN/cm2 
Verification on the node 1 (below the column): 

1 2 2

1600 2.86
sin 30 30 sin 52

d
c

c o

N
A x x

σ
θ

= = = kN/cm2 

Since 1 ,c cd effσ > , it is necessary to increase the col-
umn section according to the classical method. 

 
Example 2:  

The same pile cap of the previous example is consid-
ered, but subjected to a design load 2000dN = kN. The 
relative normal force is 1.11ν = . Table 4 shows the 
results of the iterative process in order to find x , using 
the equation (7). 

In this example, the process converges to 
25.00x = cm. However, the relation 0.52x d =  is 

Fig. 13 Example of two-pile cap. 

Table 3 Results of the iterative process – Example 1.  
Iteration x  

(cm) 
θ  

(degrees) 
1j j

j

x x
x

−− x
d

 

0 0 52.00 --- 0 
1 13.17 47.84 1.00 0.27 
2 15.00 47.20 0.12 0.31 
3 15.31 47.09 0.02 0.32 
4 15.36 47.07 <0.01 0.32 

 

Table 2 Failure modes for all pile caps. 

 Number of pile  
caps with: , ,expu teo uR P P=  

Number 
of piles 

Concrete 
crushing 

steel 
yield mR  ,supkR  

two 26 11 0.91 1.04 
three 9 12 0.65 0.85 
four 17 63 0.78 1.13 
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greater than 0.45  being expected a brittle failure. The 
problem may be solved by increasing the height of the 
pile cap or the column section and repeating the calcula-
tions.  

 
Example 3:  
The proposed model is used to calculate the four-pile 
cap shown in Fig. 14. The three-dimensional strut-and-
tie model is shown in Fig. 15. 
 
Additional data: 

58d = cm ; ' 7d = cm (total height of the pile cap = 
65 cm) 

1600dN = kN; 160xd ydM M= = kNm 
Material properties as in Example 1. 
Since the piles have the same axial stiffness, the load 

on each pile is obtained from the relationship 
ydd xd

di i i
x y

MN M
F x y

n I I
= + + , where 4n =  is the number 

of piles, 2

1

n

x j
j

I x
=

= ∑ , 2

1

n

y j
j

I y
=

= ∑ , ix  and iy  are the co-

ordinates of the pile axis relative to the system of axes 
x y−  passing through the axis of the column. 

By substituting the data, results: 1 400dF = kN, 
2 578dF = kN, 3 222dF = kN, 4 400dF = kN. The length 

of the horizontal projection of the struts is 53.15r = cm 
(obtained from the Fig. 14).  

58tan 47.5
53.15

o
o o

d
r

θ θ= = → =  

Equivalent load 2 2312de dN nF= = kN 

Relative normal force: 2312 1.45
20 40 2

de

cd

N
abf x x

ν = = =  

Table 5 shows the results of the iterative process to 
find x , using the equation (10). 

Thus: 9.59x = cm; 0.17 0.45x d = < ; 
45.03 26.6θ = ° > °   

Lever arm: 0.5 58 0.5 9.59 53.20Z d x x= − = − = cm 
Tie steel area in the alignment of the piles 1 and 2 (tie 

T12 in Fig. 15):  
578 35 8.74

53.20 43.5sx
xA
x

= = cm2 

Use the same reinforcement for tie T34. 
Tie steel area in the alignment of the piles 2 and 4 (tie 

T24 in Fig. 15):  
578 40 9.99

53.20 43.5sy
xA
x

= = cm2 

Use the same reinforcement for tie T13. 
Strut verification on the pile 2 (strut C2 in Fig. 15): 

578deF = kN (pile reaction) 
707pA = cm2 (pile cross section area) 

2 22 2 71 1 2.15 4
30p

d xk
φ

⎛ ⎞′ ⎛ ⎞= + = + = <⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

1520amp pA kA= = cm2 (magnified area on the pile) 

2 2 2

578 0.76
sin 1520sin 45.03
de

c
amp

F
A

σ
θ

= = = kN/cm2 

Since 2 7.6cσ = MPa is less than 2 10.56cdf = MPa, 
the strut safety is easily ensured. 

Table 4 Results of the iterative process – Example 2.  
Iteration x  

(cm) 
θ  

(degrees) 
1j j

j

x x
x

−−
 

x
d

 

0 0 52.00 --- 0 
1 21.18 44.93 1.00 0.44 
2 24.21 43.75 0.13 0.50 
3 24.85 43.49 0.03 0.52 
4 25.00 43.43 <0.01 0.52 

 

Fig. 14 Example of four-pile cap. 

Table 5 Results of the iterative process – Example 3.  

Iteration
x  

(cm)
θ  

(degrees) 
1j j

j

x x
x

−− x
d

 

0 0 47.50 --- 0 
1 9.42 45.08 1.00 0.16 
2 9.59 45.03 0.02 0.17 
3 9.59 45.03 0.00 0.17 

 

 
Fig. 15 Three-dimensional strut-and-tie model.
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Design with the classical method: 
Effective concrete strength:  

, 1.8 3.60cd ef cdf f= = kN/cm2 
Verification on the node 1 (below the column): 

1 2 2

1600 3.68
sin 20 40 sin 47.5

d
c

c o

N
A x x

σ
θ

= = = kN/cm2 

Since 1 ,c cd effσ > , it is necessary to increase the col-
umn section according to the classical method. 

 
5. Conclusions 

A strut-and-tie model for designing concrete pile caps is 
proposed in this work. The methodology used to evalu-
ate crushing of the concrete struts is the main difference 
between this model and the classical model proposed by 
Blévot and Frémy. In their classical model, this check is 
done for nodes situated directly over the piles and for a 
node located in the column/pile cap interface. Therefore, 
they do not consider the amplification of areas over the 
piles and below the column. This causes a major limita-
tion in the column design. 

In the proposed model, crushing of the struts on the 
piles is verified over a magnified area which considers 
the propagation of the contact stresses to the reinforce-
ment level. In this verification, a reduced concrete 
strength is adopted to take into account cracking in the 
region of tie anchorage. Check of the struts below the 
column is made on a horizontal plane located into the 
pile cap. Thus, it is considered that the vertical stress 
below the column spreads to a depth where it has been 
reduced enough not to cause crushing of the struts. This 
verification requires an iterative process. Failure by 
yielding of the reinforcement is considered in the usual 
way.  

The proposed model was used to analyze 138 pile 
caps tested by other authors, being 37 two-pile caps, 21 
three-pile caps and 80 four-pile caps. The calibration of 
the model was made using the ratio , ,expu teo uR P P= be-
tween the theoretical failure load ,u teoP  and the experi-
mental failure load ,expuP . In the theoretical analysis 
were not considered partial safety factors. The results 
showed mean values of R  between 0.65 and 0.91, 
which indicate that the model provides failure loads 
smaller than those obtained in tests. Thus, when the par-
tial safety factors are considered, a safe design will be 
obtained. 

The proposed model requires an iterative process in 
order to determine the lever arm and the strut inclination. 
However, the convergence of the method is very fast 
and good results are obtained with few iterations, as 
shown in the numerical examples. 
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Notation 
ampA  = amplified area on the pile 
cA  = area of the column cross section 
sA  = tie reinforcement area 
pA  = area of the pile cross section 
cF  = strut compressive force 
deF  = design pile reaction 

dM  = design bending moment 
dN   = design load 
dcN  = design load resisted by the column concrete 
deN  = design equivalent load  
dsN  = design load resisted by the column reinforce-

ment 
kN  = characteristic axial load 
,expuP  = experimental failure load 
,u teoP  = theoretical failure load 

R  = ratio between the theoretical failure load and the 

experimental failure load  
mR  = mean value of the ratio R  
sdR  = tensile force on the reinforcement 

Z  = lever arm 
a  = dimension of the column cross section 
b  = dimension of the column cross section  
d  = effective depth of the pile cap 
d ′  = distance between the reinforcement axis and the 

bottom face of the pile cap 
cf  = uniaxial compressive strength of concrete 
cdf  = uniaxial design compressive strength of concrete  

1cdf  = concrete compressive strength for CCC nodal 
zone 

2cdf  = concrete compressive strength for CCT nodal 
zone 

ckf  = characteristic compressive strength of concrete  
ydf  = design yield strength of reinforcement 
ykf  = characteristic yield strength of reinforcement 

k  = amplification factor of area 
ol  = distance between the axes of piles 
r  = length of the horizontal projection of the strut 
x  = depth from the top of the pile cap 

cγ  = partial safety factor for concrete strength 
fγ  = partial safety factor for actions 
sγ  = partial safety factor for steel strength 

θ  = strut inclination in the proposed model 
oθ  = strut inclination in the classical models 
λ  = ratio between the sides of the column cross sec-

tion 
ν  = relative normal force  

cσ  = concrete compressive stress 
Rσ  = standard deviation of the ratio R  
vdσ  = vertical compressive stress 
pφ  = diameter of the pile cross section 

 
 
 




