
1. INTRODUCTION
Usually, concrete structures are divided into two dis-
tinct regions, for which are made different assump-
tions about their behavior [1]. The regions in which
the assumption of plane strain of the technical bend-
ing theory is good enough are called B-regions (B
stands for beam and bending). For these regions the
standard methods of the bending theory are applied.
Standard methods are not applicable to all the other

regions of a structure where the strain distribution is
nonlinear, as near concentrated loads, corners, open-
ings, deep beams, rigid pile caps, etc. These regions
are called D-regions (D for discontinuity, disturbance
or detail).
Thus, codes for reinforced concrete structures consid-
er two different methods for design of pile caps. In the
first method, the pile cap is analyzed as a beam or a
slab supported on piles. The main reinforcement is
calculated as in a bending problem, for the bending
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Ab s t r a c t
The aim of this work is to present a new strut-and-tie model for design of rigid pile caps based on the concept of magnified
area under the column. In this magnified area, compressive stresses have been reduced enough not to cause crushing of the
struts. An iterative algorithm is used to determine the required depth of the magnified area. The model considers both fail-
ure by crushing of the compressed struts and by yielding of the tie reinforcement. A large number of experimental results
available in the literature is used to test the model. The partial safety factors method is employed for pile caps design and
structural safety is evaluated by means of the reliability index. The small failure probability, estimated through the relia-
bility index, demonstrates the safety of the proposed method. A numerical example of practical use of the model is also pre-
sented.

S t r e s z c z en i e
Celem pracy było przedstawienie nowego modelu S-T do projektowania sztywnych oczepów fundamentów palowych opartego
na koncepcji zwiększonego pola u podstawy słupa. W obrębie tak powiększonego pola powierzchni naprężenia ściskające
zostały zredukowane na tyle, aby nie doprowadzić do zmiażdżenia krzyżulców ściskanych. Algorytm iteracyjny został wyko-
rzystany do określenia wymaganej głębokości odpowiadającej powiększonemu polu przekroju naprężeń. W modelu wzięto
pod uwagę zarówno zniszczenie przez zmiażdżenie krzyżulców ściskanych, jak i w wyniku uplastycznienia prętów rozcią-
ganych. W celu weryfikacji modelu wykorzystano dużą liczbę wyników badań literaturowych. Przy projektowaniu oczepów
fundamentów palowych przyjęto częściowe współczynniki bezpieczeństwa, a bezpieczeństwo konstrukcji zostało określone
przy przyjęciu wskaźnika niezawodności. Niskie prawdopodobieństwo zniszczenia, określone z wykorzystaniem wskaźnika
niezawodności, pokazuje wysoki poziom bezpieczeństwa dla przedstawionej metody. Dodatkowo przedstawiono praktyczne
zastosowanie modelu na przykładzie numerycznym.
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moment in a reference section located in the column.
Shear strength is checked using the same criterion as
in beams. Punching shear is verified as in slabs
[2, 3, 4]. Usually, this sectional method is employed
for flexible pile caps, where the distance between the
axis of any pile to the column face is more than twice
the height of the pile cap.
In order to avoid the necessity of one-way shear rein-
forcement, shear in a reference section is limited by
the same formula used for thin slabs. The shear resis-
tance depends on the compressive strength of con-
crete and reinforcement ratio [2, 3]. Some design
codes [4, 5] also consider the slab thickness in the
evaluation of the shear resistance. Usually, the refer-
ence section used to calculate the factored shear
force is taken at a distance d from the column face,
where d is the effective depth of the pile cap.
Failure by punching shear is checked in a control
perimeter located at a distance d/2 from the column
face [2, 6], or at a distance 2d [4, 5]. There is a lack of
uniformity with respect to the location of the control
perimeter as well as the value of punching shear resis-
tance. Additional checks on the perimeter of the col-
umn cross section and around the piles may also be
needed.
In the second method, pile caps are designed using a
model of spatial truss, also called strut-and-tie model
[7, 8, 9, 10]. The verifications aim to limit the com-
pressive stresses in the concrete struts so as to pre-
vent a brittle failure. If the struts are idealized as pris-
matic or uniformly tapered compression members
[2], it is usually sufficient to limit the compressive
stresses in the nodes of the truss, located near the
piles and near the column. Then, the tie reinforce-
ment is calculated. This method is employed for rigid
pile caps, where the distance between the axis of any
pile to the column face is less than twice the height of
the pile cap [2, 4].
Nodal zones over the piles are referred to as CCT
nodal zones because they receive two struts and one
tie. Usually, an extended nodal zone is considered to
take into account the dispersion of the contact stress-
es up to the level of reinforcement. Nodal zone under
the column is referred to as CCC nodal zone because
in a two-dimensional problem it receives three com-
pressive forces. Several traditional strut-and-tie
methods use an arbitrated value x for the height of
the CCC nodal zone under the column. In these
methods, the value of x is chosen without any ratio-
nal criterion.
In a previous paper, the author [11] presented a strut-
and-tie model for design of rigid pile caps based on

the concept of magnified area under the column. In
this magnified area, compressive stresses have been
reduced enough not to cause crushing of the struts.
Thus, this verification is replaced by determining the
height x of the nodal zone at the top of the pile cap
(equal to the depth of the magnified area) required
not to cause crushing of the struts. An iterative algo-
rithm is used for this purpose.
The present paper introduces a modification in the
geometry of the magnified area that simplifies the
use of the model. The partial safety factors method is
employed for pile caps design and structural safety is
evaluated by means of the reliability index. A large
number of experimental results available in the liter-
ature is used for determining the reliability index.
The small failure probability, estimated through the
reliability index, demonstrates the safety of the pro-
posed method.

2. PROPOSED MODEL FOR DESIGN OF
PILE CAPS
In the proposed model of this study, it is considered
that the struts converge to a horizontal plane situated
at a distance x from the top of the pile cap. In this
plane, the vertical stress σvd has been reduced enough
not to cause crushing of the struts. The compressive
stress σc in the strut near the top of the pile cap is
given by σc = σvd /sin2θ, where θ is the strut inclina-
tion. The inclination angle of the strut must satisfy
the relationship tanθ  1/2, in other words θ  26.6°.
ACI Building Code [2] requires θ  25°. The height of
the pile cap is chosen to ensure this minimum incli-
nation for the concrete struts.
In order to avoid crushing of the struts near the top
of the pile cap, it is necessary to limit σc � fcd1, where
fcd1 is the design compressive strength of concrete in
this zone. Therefore, the intended horizontal plane is
one where σvd � sin2θ fcd1, as shown in Fig. 1.
As indicated in Fig. 1, the region with depth equal to
x, located under the column, is nothing more than an
extension of the column within the pile cap. In this
region the column has an enlarged base. Since the
column reinforcement penetrates to the bottom of
the pile cap, or dowel bars are used, the design load
is transferred progressively by adherence and mainly
through the amplification of the compressed area
inside the pile cap. Indeed, in the contact of the col-
umn with the top of the pile cap, only the load por-
tion Ndc = Nd – Nds is transferred immediately to the
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concrete of the pile cap, where Nds is resisted by the
column reinforcement. Failure due to bearing stress
only occurs if the concrete of the pile cap has a much
lower resistance than the concrete of the column.
Due to the confinement provided by the large con-
crete cover, concrete is subjected to a triaxial com-
pression state (for pile caps on several piles), or a
biaxial compression state (for two-pile caps). Thus,
there is a significant increase in the uniaxial com-
pressive strength fc, with no risk of crushing in this
zone even if the concrete of the pile cap has a
strength somewhat lower than the concrete of the
column.
Usually, this region is referred to as CCC nodal zone
because in a two-dimensional problem it receives
three compressive forces. Several design codes pro-
vide limits to the compressive stress in this nodal
zone. For an unconfined node, the Eurocode EC2 [5]
adopts fcd1 = 1.0(1– fck /250)fcd, where fck is the char-
acteristic strength in MPa and fcd is the uniaxial
design compressive strength of concrete. According
to this equation, it is found that fcd1  0.85fcd if
fck � 37.5 MPa. The limit 0.85fcd for the compressive
stress is also adopted by [2, 3, 12]. So, in this work it
is adopted fcd1 = 0.85fcd for the CCC nodal zone.

In the previous paper [11], the magnified area under
the column was defined considering a load distribu-
tion along the height of the pile-cap with the same
inclination of the struts. In this work, the load distri-
bution is considered as shown in Fig. 2 for a four-pile
cap.

The area of the column cross section is Ac. The area
of the base of the pile cap, in the outer contour of the
piles, is Ab. The magnified area Av at depth x is inter-
polated as

where ξ = x/d and d is the effective depth of the pile
cap.
Fig. 3 shows the area Ab for two-pile and three-pile
caps. Fig. 4 shows the proposed strut-and-tie model.
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Figure 1.
Verification of the concrete struts under the column Figure 2.

Load distribution in the vertical direction for a four-pile cap

c

Figure 3.
Area Ab at the base of the pile caps
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The inclination of the struts is given by
tanθ = (d – 0.5x)/r, where r = 0.5lo - 0.25a. For pile
caps on more than two piles, r is the horizontal pro-
jection of the strut coming out of a point within the
column and goes to the farthest pile. This equation
can be written as

where tanθ o= d/r.

Thus, for a given value of x it is possible to calculate
the inclination of the compressive struts through the
equation (2) and the magnified area Av under the col-
umn using equation (1). The vertical stress in the
magnified area is given by σvd= Nd/Av, where Nd is
the design load and Av is a function of x. Imposing the
condition σvd = sin2θ fcd1, x can be obtained through
an iterative process.
Defining the relative normal force

and imposing the condition σvd = sin2θ fcd1, where
fcd1 = 0.85 fcd, results

Solving equation (4), ξ is given by

where η = Ab/Ac.

Equation (5) can only be solved iteratively. For this
purpose, the following procedure is adopted:
Step 1: Assume x= 0 and calculate the angle θ = θo
through the relationship tanθo = d/r.

Step 2: Compute x= ξ d by means of the equation
(5). If x � 0, the solution is x = 0, indicating that the
struts can converge to the top of the pile cap. If x � 0,
go to the next step.
Step 3: With the value of x obtained in the previous
step, compute a new angle θ by means of the equa-
tion (2). With this value θ , calculate the new value of
x through the equation (5). Proceed iteratively until
convergence of x. The adopted convergence criterion
is: |x j – x j-1|/x j < 0.01, where x j-1 and x j are the val-
ues obtained in two successive iterations.
To ensure a minimum ductility and prevent brittle
failure, the relative depth ξ = x/d of the horizontal
plane obtained from equation (5) should be limited.
Thus, ξ is restricted to the values ξ � 0.45 (for
fck � 35 MPa) and ξ � 0.35 (for fck> 35 MPa), accord-
ing to CEB-FIP Model Code [13] recommendations.
Similarly, the angle of inclination of the struts is lim-
ited to θ  26.6°. If these restrictions are not met, the
effective depth d of the pile cap and/or the dimen-
sions of the column cross section must be increased.
The same should be done if the iterative process does
not converge.
To avoid the iterative process, it may be adopted a
minimum value for the angle θ , computing x by
means of equation (5). In [14], for example, it is
adopted θ= 26.6° as being this minimum strut incli-
nation. This procedure simplifies the structural
design but it can be uneconomical, particularly for
two-pile caps. Other authors [15,16] consider a fixed
value for x, such as x= 0.30d, and the strut inclina-
tion θ is obtained from the equation (2). With this
simplification, we obtain Z= 0.85d. This value of x
can be excessive if the column is not heavily loaded,
and the solution is uneconomical. Anyway, the pro-
posed iterative process involves simple calculations
as well as converges very quickly, being the recom-
mended solution.
If the column transmits a bending moment to the pile
cap, the relative normal force ν must be calculated
for an equivalent load Nde � Nd . As a simplification,
one can consider that Nde is equal to the number of
piles multiplied by the design reaction of the most
loaded pile.
Once x is known, the lever arm Z= d – 0.5x is defined
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Figure 4.
Proposed strut-and-tie model for two-pile caps
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as shown in Fig. 4. Figs. 5 and 6 show the variations
of the relative lever arm Z/d for two ratios η= Ab/Ac.
It should be noted that the simplified value Z= 0.85d
is excessive in many cases. These Figs. can be used to
determine the minimum effective depth of the pile
cap. For example, for a pile cap with η = 4 andν = 0.6, it is necessary that d/r > 0.75 as can be seen
in Fig. 5. If d/r= 1.00, results Z/d = 0.90. Similar
graphs can be obtained for other ratios of η = Ab/Ac.

Once the lever arm Z is obtained, the tie steel area is
calculated as As = Rsd /fyd , where Rsd= 0.5Nd cotθ
and cotθ = (0.5lo - 0.25a)/Z. Therefore,

where fyd is the design yield strength of the steel.

Equation (6) may be written as

where Md is the design bending moment in a refer-
ence section located at a distance 0.25a behind the
column face caused by the pile reaction.
The pile reactions are obtained considering the pile
cap as a rigid body and each pile is modeled as a
spring element. If the piles are loaded unequally due
to the eccentricity of the force Nd, it must be consid-
ered the one that causes the largest value ofMd in the
reference section. The model may be used to calcu-
late the reinforcement of pile caps supported on sev-
eral piles. In order to do this, just calculate the reac-
tion of each pile and determine the maximum bend-
ing moment in the reference section. This bending
moment is calculated considering the reactions of all
piles located at the same side of the analyzed section.
Fig. 7 indicates the sections for calculation of the
reinforcement in two orthogonal directions, for a pile
cap with many piles. The reinforcement in direction 1
is calculated for the bending moment in the section
S1, caused by the reactions of all piles located on the
right of this section. If the piles on the left cause a
higher bending moment, one should consider the sec-
tion S1 located in this side. The reinforcement in
direction 2 is calculated for the bending moment in
the section S2, in a similar way. The reinforcement in
each direction should be concentrated in the align-
ment of the piles. Special attention should be given to
anchoring of the tie bars. The minimum force to be
anchored must be greater than or equal to 75 percent
of the maximum tensile force [17]. Additional rein-
forcement placed between the piles may be required
to control concrete cracking. If some piles are ten-
sioned, a negative bending moment will appear which
will require reinforcement in the upper face of the
pile cap. Furthermore, it should be ensured that the
steel bars of the tensioned piles are anchored at the
top of the pile cap.
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Figure 5.
Relative lever arm Z/d for η = 4
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The strut stress at node 2 (Fig. 4) on the pile is given
by

where Fde is the design pile reaction, Aamp = kAp is the
amplified area on the pile, Ap is the area of the pile
cross section and k is a factor that takes into account
the spreading of the contact stresses to the centroid
of the reinforcement.
For two-pile caps subjected to a centered load as
shown in Fig. 4, Fde= 0.5Nd. If the piles are unequal-
ly loaded, one should determine the node where σc2
is maximum.
It is assumed that the contact stresses on the piles
spread at 45 degree angles in all directions, according
to the recommendations of EC2 [5]. Thus, the coeffi-
cient k is given by

where �p is the diameter of the pile cross section and
d′ is the distance between the reinforcement axis and
the bottom face of the pile cap as shown in Fig. 4.
For piles of square section, �p is the side of the cross
section. It is necessary to ensure that the amplified
area Aamp = kAp do not fall out of the pile cap. In all
cases, it is recommended to limit k � 4.
For two-pile caps, the spreading occurs only in the
direction of the piles and k =1+ 2d′ /�p . If it is nec-
essary to consider the bidirectional amplification
given in equation (9) to avoid crushing of the strut,
transverse reinforcement is required to restraint ver-
tical splitting on the pile. This can be modeled using
a transverse strut-and-tie model. The area of this
transverse reinforcement is given by Ast= 0.25Fde /fyd.
This reinforcement is not necessary for pile caps with
more than two piles.

The nodal zone over the pile is referred to as CCT
nodal zone because it receives two struts and one tie.
In order to avoid crushing of the struts it is necessary
to limit σc2 � fcd2. Here there is no consensus about
the limit to the compressive stress fcd2, as shown in
[11]. So, conservatively, it is adopted

according to CEB-FIP Model Code [13] recommen-
dations.

3. VERIFICATION OF THE STRUCTUR-
AL SAFETY
Structural safety may be evaluated comparing its
resistance to external loads. The difference between
these two values is a measure of the distance to the
ultimate limit state. Considering resistance and loads
as random variables, it is necessary to formulate the
problem in terms of the failure probability. If Fu is a
random variable representing the failure load of the
structure (i.e., its load capacity), and Fs represents the
applied loads, the failure probability pF is given by

and indicates the probability of external actions
exceeding the structural resistance [18].
This problem can be formulated in terms of the safe-
ty margin or of the safety coefficient [19]. The second
alternative is adopted in this work. Defining the safe-
ty coefficient S = Fu/Fs, failure corresponds to the
occurrence of the event S < 1. If S has a lognormal
distribution, then its natural logarithm Y = ln S has a
normal distribution with mean value µY and standard
deviation σ Y. Then, the failure probability is given by
where fY (y) is the normal or Gaussian distribution.

Defining the standard reduced variable t=(y–µY )/σY,
equation (12) can be written as

where β=µY /σY is the reliability index and � (– β ) is
the cumulative function of the reduced normal distri-
bution.
As can be observed, the failure probability reduces asβ increases. Thus, β index is an important measure of
the safety level once it is related to the failure proba-
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Figure 7.
Reference sections for calculation of the reinforcement
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bility or, alternately, to the structural reliability.
In order to demonstrate the validity of the proposed
model, 186 pile caps tested by other authors have
been analyzed. These experimental results include 37
two-pile caps, 21 three-pile caps and 128 four-pile
caps. All pile caps were subjected to a centered load.
The columns have square or rectangular cross sec-
tion. The pile sections can be square, rectangular or
circular. Concrete compressive strength fc based on
tests of cylinders varies from 13.2 MPa to 49.3 MPa.
Table 1 shows summary information about the pile
caps. Full details may be obtained in references listed
in the table. For four-pile caps, the complete data
may be obtained in [29].

When carrying the structural design, the design load
Nd is given by Nd= γ f Nk , where Nk is the character-
istic load and γ f > 1 is a partial safety factor. Design
compressive strength of concrete is fcd= fck/γ c, where
fck is the characteristic strength and γ c> 1 is other
partial safety factor. Finally, design yield strength of
reinforcement is fyd = fyk /γ s, where fyk is the charac-
teristic yield strength and γ s> 1 is a third partial
safety factor. For comparison with experimental
results, it is adopted fck= fc and fyk= fy , where fc and
fy are the strengths obtained in the tests. The partial
safety factors γ c = 1.50 and γ s = 1.15 are adopted in
accordance with EC2 [5]. For the load factor,γ f= 1.40 is assumed to be a mean value in accor-
dance with EN 1990 [30].
The load capacity Fu is the experimental failure load.
The applied load Fs is equal to the characteristic load
Nk= Nd/γ f. Then, the safety coefficient S = Fu/Fs and
Y = ln S for each particular test can be determined.

Considering all tests for each type of pile cap, one can
determine the mean value µY and the standard devia-
tion σY. Finally, the reliability index β=µY /σY and the
failure probability pF =� (–β ) can be calculated.
To determine the theoretical failure load, an incre-
mental process is employed for the load Nd. For each
value of Nd, it is determined the depth x of the hori-
zontal plane with the iterative algorithm presented
previously. Then the compressive stress in the strut
on the pile with use of equations (8), (9) and (10) is
verified. Finally, the tensile force Rsd in the tie is com-
pared with its strength As fyd. If the rupture does not
occur for any of these two failure modes, the load is
increased to find Nd. The applied load Fs to calculate
the safety coefficient is Fs = Nd/γ f .
4. RESULTS AND DISCUSSION
Fig. 8 shows the normal probability paper for
Y= ln S for 37 two-pile caps. In the same figure, the
result of the Kolmogorov-Smirnov test (K-S test) is
indicated for a fit with the normal distribution. For a
5% significance level and 37 sample points, the table
for K-S test [31] provides D0.05

37 = 0.22. As D <D0.05
37 , it

can be assumed that the safety coefficient S is log-
normal.

Fig. 9 shows the histogram of Y= ln S for 37 two-pile
caps. The mean value of Y is µY= 0.82 and the stan-
dard deviation is σY = 0.10. The reliability index isβ = 8.2.
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Figure 8.
Probability paper for two-pile caps

Table 1.
Pile caps used for checking the model

Ref. [ ] Number of
pile caps

Number of
piles

fc
MPa
min

fc
MPa
max

[20] 11 2 32.8 33.9
[21] 20 2 19.5 32.3
[22] 6 2 23.6 47.0
[22] 12 3 17.7 37.4
[23] 9 3 24.5 40.3
[22] 31 4 13.2 49.3
[24] 13 4 22.5 43.7
[25] 19 4 18.9 30.9
[26] 17 4 25.6 30.9
[27] 30 4 24.5 29.4
[28] 18 4 20.2 37.9
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Fig. 10 shows the normal probability paper for
Y= ln S for 21 three-pile caps and the result of the
K-S test. For a 5% significance level and 21 sample
points, the table for K-S test provides D0.05

21 = 0.29. As
D<D0.05

21 , it can be assumed that the safety coefficient
S is lognormal.

Fig. 11 shows the histogram of Y= ln S for 21 three-
pile caps. The mean value is µY =1.04, the standard
deviation is σY = 0.18 and the reliability index isβ= 5.8.

Fig. 12 shows the normal probability paper for
Y= ln S for 128 four-pile caps and the result of the
K-S test. For a 5% significance level and 128 sample
points, the table for K-S test provides D0.05

128 = 0.12. As
D<D0.05

128 , it can be assumed that the safety coefficient
S is lognormal.

Fig. 13 shows the histogram of Y= ln S for 128 four-
pile caps. The mean value is µY= 0.82 , the standard
deviation is σY = 0.14 and the reliability index isβ= 5.9.
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Figure 12.
Probability paper for four-pile caps

Figure 11.
Histogram for three-pile caps

Figure 9.
Histogram for two-pile caps

Figure 10.
Probability paper for three-pile caps
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As can be noted, the reliability index varies according
to the number of piles. The highest value for the reli-
ability index β was obtained for two-pile caps. This
high value for β is due to the fact that the standard
deviation σY is very small.
Table 2 shows a summary of the results, together with
the failure probability pF =� (–β ).

EN 1990 [30] adopts a target reliability index β= 3.8
for medium failure consequence in a reference peri-
od of 50 years. For high failure consequence the tar-
get reliability index is β= 4.3. For a reference period
of 1 year, these target indexes rise to β = 4.7 andβ = 5.2, respectively. These target reliability indices
were achieved for all pile caps.

5. NUMERICAL EXAMPLE
The proposed model is used to calculate the two-pile
cap shown in Fig. 14.

Table 3 shows the results of the iterative process to
find x, using equations (2) and (5).
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Figure 13.
Histogram for four-pile caps

Figure 14.
Example of two-pile cap

Table 2.
Reliability index and estimated failure probability

Table 3.
Results of the iterative process

Number
of piles µY σY β= pF

2 0.82 0.10 8.2 0.12x10-15

3 1.04 0.18 5.8 0.33x10-8
4 0.82 0.14 5.9 0.18x10-8

µYσY

Iteration x
(cm)

θ
(degrees)

x j – x j-1
x j

x
d

0 0 52.00 --- 0
1 10.98 48.58 1.00 0.23
2 13.79 47.62 0.20 0.29
3 14.70 47.31 0.06 0.31
4 15.01 47.20 0.02 0.31
5 15.12 47.16 <0.01 0.32

c

Additional data:

1600=dN kN; 30=ckf MPa; 500=ykf MPa 

Design strength of concrete:  

205.130 ==cdf MPa (= 2 kN/cm2)

Design strength of reinforcement:  

43515.1500 ==ydf MPa (= 43.5 kN/cm2)

Relative normal force: 

89.0
23030

1600 ===
xxfA

N

cdc

dν

5.373025.0905.025.05.0 =−=−= xxalr o cm 

o
oo r

d 5228.1
5.37

48tan =→=== θθ

Area of the base (see Fig. 3):  

( ) 360030603030 =++=bA cm2

4
3030

3600 ===
xA

A

c

bη

Thus: 12.15=x cm; 45.032.0 <=dx ;
oo 6.2616.47 >=θ
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Employing the Fig. 5 with d/r= 1.25 and ν = 0.90,
Z/d= 0.83 is obtained without performing the itera-
tions. The final result of the iterative process shown
in Table 3 is practically the same as that obtained in
[11]. The advantage of the present formulation is the
possibility of drawing graphs as shown in Figs. 5 and
6, which allow the direct solution of the problem. 6. CONCLUSIONS

An iterative strut-and-tie model for designing con-
crete pile caps is proposed in this work. The method-
ology used to determine the height of the CCC nodal
zone under the column is the main difference
between this model and traditional strut-and-tie
methods. Several traditional strut-and-tie methods
use an arbitrated value x for the height of the CCC
nodal zone. In these methods, the value of x is chosen
without the use of any methodology, for example, it is
simply adopted x= 0.30d.
In the proposed model, crushing of the struts below
the column is verified on a horizontal plane located
into the pile cap. Thus, it is considered that the verti-
cal stress below the column spreads to a depth x
where it has been reduced enough not to cause crush-
ing of the struts. The determination of the depth of
this horizontal plane (the height of the CCC nodal
zone under the column) requires an iterative process.
In a previous article [11], the magnified area under
the column was defined considering a load distribu-
tion along the height of the pile-cap with the same
inclination of the struts. The present paper intro-
duces a modification in the geometry of the magni-
fied area that simplifies the use of the model. With
this new formulation for the magnified area, it is pos-
sible to elaborate graphs that allow the direct solu-
tion of the problem, without the need to perform iter-
ations. Some graphics of this type are shown in Figs.
5 and 6.
The proposed model was used to analyze 186 pile
caps tested by other authors, being 37 two-pile caps,
21 three-pile caps and 128 four-pile caps. The partial
safety factors method was employed for pile caps
design and structural safety was evaluated by means
of the reliability index. The small failure probability,
estimated from the reliability index, demonstrates the
safety of the proposed method. A numerical example
of dimensioning was also presented.
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Lever arm: 

44.4012.155.0485.0 =−=−= xxdZ cm 

84.04844.40 ==dZ

Tie steel area: 05.17
5.4344.40

5.3716005.0 ==
x
xxAs cm2

Strut verification on the pile: 

56.10
250

160.02 =−= cd
ck

cd fff MPa 

8005.0 == dde NF kN (pile reaction) 

707=pA cm2 (pile cross section area) 

47.1
30

72121 =+=
′

+= xdk
pφ

(considering unidirectional spreading)  

1039== pamp kAA cm2 (magnified area on the 

pile) 

43.1
16.47sin1039

800
sin 222 ===

θ
σ

amp

de
c

A
F

k

N/cm2 ( 3.142 =cσ MPa) 

Since 22 cdc f>σ , it is necessary to consider the 

bidirectional spreading. 

415.2
30

72121
22

<=+=
′

+= xdk
pφ

(conside

ring bidirectional spreading) 

1520== pamp kAA cm2 (magnified area on the pile) 

98.0
16.47sin1520

800
sin 222 ===

θ
σ

amp

de
c

A
F

k

N/cm2 ( 8.92 =cσ MPa) 

Since 22 cdc f<σ , the strut safety is ensured. 

Transverse reinforcement on the piles: 

60.4
5.43
80025.025.0 === x

f
FA
yd

de
st cm2.

43.1= kN/cm2 ( 3.142 =cσ MPa) 

S

98.0= kN/cm2 ( 8.92 =cσ MPa) 

S

-
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