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ABSTRACT: The simplified method of ACI for prediction of deflections of reinforced concrete beams is 
analyzed in this work. Results obtained with this method are compared with those obtained through a 
nonlinear analysis. Additional deflections due to creep and shrinkage are considered in the study. The 
results indicate that the ACI method is appropriate for calculation of instantaneous deflections of 
reinforced concrete beams. However, this method is not satisfactory for evaluation of long-term 
deflections of reinforced concrete beams. Some modifications are suggested to improve the accuracy of the 
simplified method. 
 
RESUMO: Neste trabalho analisa-se o método simplificado do ACI para o cálculo de flechas em vigas de 
concreto armado. Os resultados obtidos com esse método são comparados com os resultados de uma 
análise não-linear. As flechas adicionais devidas à fluência e à retração são consideradas no estudo. Os 
resultados indicam que o método do ACI é satisfatório para o cálculo das flechas iniciais das vigas de 
concreto armado. Entretanto, esse método não é adequado para a avaliação das flechas de longa duração 
das vigas de concreto armado. Algumas modificações são sugeridas para melhorar o método simplificado. 
 
 
1. INTRODUCTION 
 

Present design procedures of reinforced 
concrete structures are based on limit states 
concepts. They are generally classified as ultimate 
limit states and serviceability limit states. 

The ultimate limit state refers to the bearing 
capacity of a structural part or of the structure as a 
whole. In this phase of the design procedures, 
attention is given to the criteria for structural 
resistance. Actions and sectional efforts are 
evaluated and partial safety factors are introduced 
to obtain a target reliability level. 

The serviceability limit states are associated 
with the structural performance under expected 
actions in normal conditions of utilization. It is 
generally necessary to consider two limit states: 
the limit state of cracking and the limit state of 
deformation. Other serviceability limit states, such 
as excessive vibration, may be necessary to 
consider when dynamic actions are present. 

In the verifications of the serviceability limit 
states, actions are considered with characteristic 
values, what is equivalent to considering partial 
safety factors as equal to one. In the same way, 
mean mechanical properties of the materials are 
used to evaluate the structural rigidity. 

Usually, design codes for reinforced concrete 
structures require that beam deflections are 
calculated for the quasi-permanent combination of 
the actions. Creep and shrinkage effects should be 
included in this analysis. 

The quasi-permanent combinations are actions 
that can act during great part of the useful life of 
the structures. In each combination, permanent 
action is represented by a single representative 
value, . Usually, this value is considered as a 
mean value, which is calculated from nominal 
dimensions of the structural elements

D

2

1. Variable 
actions are considered with the quasi-permanent 
values Lψ , where  is the characteristic value 
and 

L
12 <ψ .  
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According to the CEB2, for example, for the 
accidental loads of residential buildings and of 
office buildings, it is necessary to consider 

4.02 =ψ . In these cases, the quasi-permanent load 
 is given by oP

 
LDPo 4.0+=                          (1) 

 
where  and  are the characteristic values of 
the dead load and the live load, respectively. 

D L

Once the analysis is made for the service loads, 
it is admitted that the compression stresses in the 
structure are small enough so that it is possible to 
consider a lineal elastic behavior for concrete. 
Then, it is possible to elaborate simplified 
procedures of analysis, where the only source of 
nonlinearity is due to the cracking of concrete. 
With that, a reasonable simplification is gotten, 
which facilitates the reinforced concrete structural 
analysis. 

In a consistent analysis of reinforced concrete 
beam, it is necessary to take into account the 
cracking and the tension stiffening effect. Creep 
and shrinkage of concrete should also be 
considered for calculation of long-term deflection. 

The analysis may be accomplished with 
different refinement levels, from the nonlinear 
analysis, until the utilization of simplified methods 
as the bilinear method adopted by CEB3 and in 
Eurocode-24. 

On the other hand, the ACI Building Code5 
recommends a simplified formula to represent the 
equivalent rigidity of the cracked beam. Additional 
long-term deflection, resulting from creep and 
shrinkage, is included as an extra term.  

This method of ACI has been adopted in several 
national codes, as in EHE-996 of Spain, in NBR-
61187 of Brazil, and in the codes of several 
countries all over the world. 

The objective of this work is to verify the 
accuracy of this simplified method of ACI and to 
suggest some improvements. The nonlinear model 
presented in the following section is considered as 
the reference model. 
 
2. NONLINEAR MODEL FOR REINFORCED 
CONCRETE BEAMS ANALYSIS 
 

Deformations of reinforced concrete beams 
should be calculated considering the material 
nonlinearities due to concrete and steel behavior. 

Then, it is necessary to adopt stress-strain 
relationships compatible with the experimental 
results obtained in uniaxial tests. 

For reinforced concrete beams that are 
submitted to the service loads the tension 
stiffening effect is of fundamental importance. 
This behavior may be modeled through a stress-
strain relationship of steel embedded in 
concrete1,8,9. Alternatively, a stress-strain 
relationship for concrete in tension, including a 
descending branch, may also be used10,11,12. 

On the other hand, it is necessary to consider 
creep and shrinkage effects, which can be made 
through several rheological models13,14. The use of 
rheological models, based on Maxwell or Kelvin 
chains, demands a time integration where the 
deformations of the structure are obtained step by 
step. This procedure is onerous and unnecessary in 
design level, especially in building design, for the 
following reasons: 
  1. The time integration leads to results that 
depend on the creep function.   
  2. The experimental results indicate a great 
variability in the development of creep in the 
course of time, so that any creep function to be 
adopted represents just a rough estimate of the 
concrete behavior.   
  3. The quasi-permanent loading that is used in 
the analysis only represents a conventional value 
of actual long-time loads that act in the structure.   
  4. The actual loading in the structure is not 
known and it can vary enough from one structure 
to another.   

In view of this, the numeric analyses through 
rheological chains lose importance when applied 
to the design of building structures, though they 
represent with greater fidelity the concrete 
behavior. In these cases, it is desirable to obtain 
the final answer of the structure starting from 
entrance parameters that are estimated for loads 
and for properties of the materials, particularly the 
mechanical properties of concrete. In that way, the 
nonlinear model should have the balance between 
the numeric accuracy and the simplicity to become 
compatible with the reality. 

The nonlinear model adopted in this work is the 
classic layered model which is used largely in 
reinforced concrete nonlinear analysis. This model 
had its accuracy demonstrated in previous 
works8,15 and it allows obtaining the probable 
deflections of reinforced concrete beams.  
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The stress-strain diagram for concrete subjected 
to compression is shown in Fig. 1. 
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Fig. 1 – Stress-strain diagram for concrete in 

uniaxial compression 
 

Several expressions have been proposed to 
represent the stress-strain diagram for concrete in 
uniaxial compression1,16,17. According to CEB1, for 
example, the compression stress cσ , is given by 
 

( ) 


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where coce fEk ′−= ε ; oc εεη =  and cε  is the 
compression strain. 

For the strain oε , corresponding to the peak 
compressive stress , the value cf ′

( )ϕε +−= 10022.0o  is adopted, where ϕ  is the 
creep coefficient. The ultimate strain is 

( )ϕε +−= 10035.0u . 
The modulus of elasticity of concrete, , may 

be estimated from the compressive strength 
cE

cf ′ , 
using empirical relationships presented in the 
design codes1,5. 

For long-term loading, the total deformation 
including creep is calculated by using an effective 
modulus of elasticity for concrete, , given by ceE
 

ϕ+
=

1
c

ce
E

E                                      (3) 

 
For concrete subjected to tension the stress-

strain diagrams indicated in Fig. 2 are adopted.   
The tensile stress ctσ  is given by 

 
( )
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              (4) 

 
where ctε  is the tensile strain and lim,ctσ  is the 
maximum tensile stress for cracked concrete, given 
by 

6.0

lim, 







=

ct

cr
ctct f

ε
ε

σ                      (5) 

 
where cctcr Ef=ε  is the cracking strain of 
concrete for short-term loads. 

The expression (5) takes into account the 
tension stiffening effects. 
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Fig. 2 – Stress-strain diagrams for concrete in 

tension 
 

The axial tensile strength  may be estimated 
from the compressive strength , using empirical 
relationships presented in the design codes

ctf
fc′

1,5. 
As it may be observed, the constitutive model is 

an extension of the effective modulus method for 
the nonlinear case. This model is satisfactory when 
the history of stress is characterized by limited 
variations during the aging of concrete.  

When great stress variations occur during the 
aging period, the model may be improved applying 
the adjusted effective modulus method18,19. That is 
equivalent to consider an adjusted creep 
coefficient ζϕϕ =a , where ζ  is the aging 
coefficient. In the practical applications 8.0=ζ  
may be adopted. 

In this work 1=ζ  is adopted because it is 
assumed that the quasi-permanent load doesn't 
vary in the course of time. 

The total strain of concrete, totc,ε , is given by 
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csctotc εεε σ +=,                         (6) 
where σε c  is the stress dependent strain and csε  is 
the shrinkage strain. 

Therefore, the stresses in the concrete may be 
obtained with the previous model considering the 
portion of the strain cstotcc εεε σ −= , . 

The stress-strain diagram for reinforcing steel is 
represented in Fig. 3. The same diagram is used for 
tension and for compression. 

fy
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Fig. 3 – Stress-strain diagram for reinforcing steel 

 
The structural analysis is accomplished by 

means of the finite element method. The finite 
element used is the standard element for plane 
frames, with two nodes and three degrees of 
freedom for node (one rotation and two 
displacements). Three Gauss integration points are 
considered along the finite element length, for 
determination of the nodal nonlinear actions. 

At each integration point the concrete cross-
section is discretized in  layers in the 
direction of the height, as it is shown in Fig. 4. The 
resistant sectional forces are obtained considering 
the stresses in the reinforcement and in the center 
of each concrete layer. 
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Fig. 4 – Beam cross-section and discretization in 
layers 

Using the finite element method, the strain xε  
in a generic layer of the cross-section, located to a 
distance  from centroidal axis of the gross 
section, neglecting reinforcement, is given by 

z

χεε zxox +=                           (7) 
 
where xoε  and χ  represent the axial strain and the 
curvature, obtained through the nodal 
displacements of the element. 

The expression (7) is also used to calculate the 
strain in each steel layer, being enough to use for 

 the distance of the steel layer to the centroidal 
axis of gross section. Using the stress-strain 
diagram of the Fig. 3, it is obtained the stress 

z

sσ  
in the steel. 

The expression (7) supplies the total strains in 
the concrete, including creep and shrinkage. The 
mechanical strain σε c  is given by   

csxoc z εχεε σ −+=                           (8) 
 
where izz = , with i , represents the 
distance of the center of concrete layer until the 
centroidal axis of gross section. 

n,...,1=

After the calculation of the strain σε c , the 
constitutive model is used to obtain the stress in 
the center of each concrete layer. 

Using the finite element method it is obtained 
the displacements of the structure at a desired load 
level. The nonlinear equations system, due to 
material nonlinearities, is iteratively solved using 
the BFGS method. Small load increments are 
applied on the beam until the rupture occurs. 

Occurrence of the rupture is assumed when the 
compression strain in the concrete results smaller 
or equal to ( )ϕε +−= 10035.0u , or when the 
tensile strain in the steel reaches the value of 

. 010.0
 
3. SIMPLIFIED METHOD OF ACI 
 

According to ACI Building Code5, 
instantaneous deflections of reinforced concrete 
beams, ( )otW , shall be computed with the 
effective moment of inertia , given by eI
 

gcr
a
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where 
gI = moment of inertia of gross concrete section 

about centroidal axis, neglecting reinforcement; 



Teoria e Prática na Engenharia Civil, n.7, p.49-60, Setembro, 2005 53 . 

crI  = moment of inertia of cracked section 
transformed to concrete; 

aM = maximum moment in member at stage 
deflection is computed; 

crM  = cracking moment. 
The cracking moment is given by 

 

t

gr
cr y

If
M =                               (10) 

 
where  is the distance from centroidal axis of 
the gross section, neglecting reinforcement, to 
extreme fiber in tension and 

ty

rf  is the modulus of 
rupture of concrete. 

Thus, for a rectangular section it results in the 
expression 62

rcr fbhM = , where  is the width 
and h  is the total height of the cross-section. 

b

For prismatic members, effective moment of 
inertia  may be computed considering the 
geometrical properties of the critical section. Thus, 
deflections are calculated considering the effective 
rigidity . 

eI

cE eI
Additional long-term deflection, , resulting 

from creep and shrinkage, is obtained by 
W∆

 

( )otWW
'501 ρ

ξ
+

=∆                   (11) 

 
where  is the instantaneous deflection 
caused by the sustained load and 

( )otW
( )bdAs′=′ρ  is 

the compression reinforcement ratio on the critical 
section. 

Critical section may be taken at midspan for 
simple and continuous beams, and at support for 
cantilevers.  

The factor ξ  depends on the duration of the 
load, being 0.2=ξ , for 5 years or more, and 

4.1=ξ , for 12 months of duration of the load.   
The total deflection of the beam, W , is given 

by 
 

( ) WtWW o ∆+=                       (12) 
 

Expression (9) for the effective moment of 
inertia was determined empirically by Branson20 
and it is used to consider the tension stiffening 
effect. Expression (11) was also obtained based on 

experimental results of beams under long-term 
loads21,22. 
 
4. IMPROVEMENT OF THE ACI METHOD 
 

The ACI method may be improved if the steel 
areas are included in the calculation of the 
cracking moment . On the other hand, when 
the shrinkage is included in the analysis, it is 
convenient to adopt the axial tensile strength  
instead of the modulus of rupture 

crM

ctf

rf  to consider 
the unfavorable effects of the tensile stress induced 
by shrinkage. 

Therefore, the cracking moment is obtained 
through the expression  

t

t
cr y

If
M

1

1=                             (13) 

 
where  is the moment of inertia of the uncracked 
transformed section,  is the distance from 
centroidal axis of the transformed section to 
extreme fiber in tension and , or 

1I

ty1

rt ff = ctt ff =  
when the shrinkage is considered. 

The values of  and  may be obtained 
easily, but it is convenient to simplify the 
calculation of the cracking moment. This may be 
obtained through the expression 

1I ty1

 

socrs
t

gt
cr KMK

y
If

M ,==              (14) 

 
where the coefficient  depends on the tensile 
reinforcement ratio 

sK
( )bdAs=ρ  and of the 

relationship dh=β  between the total height  
and the effective height d  of the cross-section. 

h

Through a regression analysis, it was found a 
simplified expression for  given by sK
 

( )ρβ781051 −+=sK                (15) 
 

The expression (15) was obtained for 
rectangular sections, but it may also be used for T-
sections. In this case, ( )dbA ws=ρ , where  is 
the web width. 

wb

Fig. 5 compares the cracking moment obtained 
through the exact expression, given in the equation 
(13), and through the approximate expression, 
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given in the equations (14) and (15). An excellent 
agreement is observed between the two 
expressions.  
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Fig. 5 – Validation of the simplified expression for 

the cracking moment 
 

After the calculation of the cracking moment 
through the expressions (14) and (15), the effective 
moment of inertia  may be obtained by the 
employment of the equation (9). However, it is 
considered the moment of inertia  of uncracked 
transformed section, including the reinforcement, 
instead of . 

eI

1I

gI
Then, the effective moment of inertia  is 

given by 
eI

1
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For rectangular sections, it may be written the 

approximate relationship 
 

( )( )[ ] gII βρρ 5.4664131 2
1 −−+=             (17) 

 
where β , ρ  and  are as defined previously. gI

Fig. 6 compares the exact relationship gII1  
with the approximate relationship given in the 
expression (17). The exact relationship was 
obtained for a modular ratio 5.7== cs EEα . As 
it is observed, the approach is satisfactory. 
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Fig. 6 – Exact and approximate relationships 

gII1  
 

The moment of inertia  for cracked 
rectangular sections is given by 

crI

 

( ) ( )( ) 32 1'3
6
1 bdIcr 



 −−+−= δδλαρλλ    (18) 

where 

( ) ( ) ( )'2'' 22 δρραρραρραλ +++++−=  (19) 
 
with dd '=δ  according to Fig. 4. 

In this version proposed for the ACI method, 
creep is included by using the effective modulus of 
elasticity for concrete according to expression (3). 
Thus, deflections including creep effects are 
calculated considering the effective stiffness 

, where here  ece IE ( )ϕscce KEE ′+= 1 .  The 
coefficient sK ′  takes into account the favorable 
effect of compression reinforcement in reducing 
long-term deflections. This coefficient is given by 
 

ρ′+
=′

501
1

sK                          (20) 

 
according to ACI Building Code. 
 

The effective moment of inertia  is obtained 
through the equation (16).   For the evaluation of 

 it is considered the effective modular ratio 

eI

crI
( ) css EEKe ϕα ′+= 1 .  
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Shrinkage curvature csχ  may be computed by 
expression 

e

e
ecsscs I

S
K αεχ ′=                        (21) 

where csε  is the free shrinkage strain and  is 
the first moment of area of the reinforcement about 
the centroid of the equivalent section with 
effective moment of inertia . 

eS

eI
The centroid location of the equivalent section 

is ignored and its determination requires the use of 
an iterative process. However, the expression (22) 
may be used as a good approach  
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where 
ex = distance from extreme compression fiber to 

centroid of equivalent section; 
1x = distance from extreme compression fiber to 

centroid of the uncracked transformed section; 
crx = distance from extreme compression fiber to 

centroid of the fully cracked transformed section. 
Equation (22) is presented by Branson23 with 

the exponent of 2.5 instead of 3. However, the 
results differ little when either of these values is 
used. 

The compression reinforcement may be 
disregarded when  is calculated. Therefore, for 
the rectangular section shown in the Fig. 4, it 
results 

1x
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The distance  from extreme compression 

fiber to centroid of the fully cracked transformed 
section is 

crx

dxcr λ= , where λ  is given in equation 
(19). 

After the calculation of the distance  by 
using the equation (22), the first moment of area of 
the reinforcement  may be obtained. For the 
rectangular section of Fig. 4, it results 

ex

eS

 
( ) ( esese xdAxdAS −+−= '' )               (24) 

Thus, additional deflection W  resulting from 
shrinkage is obtained by integration of the 

curvatures given in equation (21). For a single 
span beam, it results  

cs

cscs
lW χ
8

2
=                            (25) 

 
where l  is the span of the beam. 

Shrinkage deflection in continuous beams may 
be predicted by the multiplication of the deflection 
calculated through the equation (25) by a reduction 
factor. This reduction factor is 0.5 for an interior 
span and 0.7 for an end span18. The equation (25) 
may also be used for a cantilever with the 
coefficient 2 instead of 8. 
 
5. EXAMPLES 
 

The reinforced concrete single span beam of 
constant cross-section shown in Fig. 7 is analyzed 
in this work. The uniform loading is composed by 
the dead load  and by the live load . In the 
finite element analysis, the beam span was 
discretized in 10 elements. 
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Fig. 7 – Loading and geometry of the beam 
 

In the analyzed examples, it is assumed that the 
specified compressive strength of concrete is 

25=′cf MPa. Using the expressions of the ACI 
Code, it is obtained the modulus of elasticity of 
concrete 7.23=cE

1.3
GPa and the modulus of 

rupture =rf

2

MPa.  The axial tensile strength of 
concrete is estimated as MPa, according 
to CEB. The creep coefficient is considered equal 
to 

6.2=ctf

5.=ϕ  and free shrinkage strain is 

. 510−x50−=csε
The specified yield strength of reinforcement is 

500=yf MPa and it is assumed a modulus of 
elasticity 200=sE GPa. 

The required steel areas in the beam cross-
section are computed considering the strength 
requirements of the ACI Code. Three cases of 
loading are considered, as it is indicated in the 
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Table 1. Those values represent the service loads 
that usually act in the beams of the residential 
buildings.  

The calculation of the steel area indicates that 
 for the three cases of loading. Then, 

cm
0=′sA
.0=′sA 62 2 (equivalent to two bars with 

diameter of 6.3 mm) is adopted as compressive 
steel. 

Table 1 indicates the loads and steel areas of the 
three analyzed beams. 
 

Table 1 – Loads and steel areas of the beams 
Load (kN/m) Steel area (cm2) Beam 
D  L  sA  sA′  

A1 8.5 1.5 2.5 0.62 
A2 13.0 2.0 3.4 0.62 
A3 17.0 3.0 4.6 0.62 

 
 
6. RESULTS 
 

The answers of the three beams, obtained with 
the nonlinear model, with the ACI method and 
with the improved method of ACI as proposed, are 
shown in Fig. 8 to 10. These figures indicate the 
relationships between the uniform load and the 
midspan instantaneous deflection.  

It may be observed in Fig. 8 to 10  that there is 
a good agreement among the three methods in all 
the stages of the loading. Usually, the proposed 
model agrees better with the nonlinear model as a 
consequence of the consideration of tensile 
reinforcement for calculation of the cracking 
moment. However, the influence of the 
reinforcement is not very significant because the 
reinforcement ratio is small in the three beams. 

Table 2 indicates the values of the 
instantaneous deflection for the total service load 

. As it is observed, the proposed model 
agrees better with the nonlinear analysis than the 
method of ACI. 

LD +

 

0 2 4 6 8 10 12 14
Midspan instantaneous deflection (mm)

16

0

2

4

6

8

10

12

14

16

18

20

U
ni

fo
rm

 lo
ad

 (k
N

/m
)

Nonlinear

ACI

Proposed model

Load = D
Load = D+L

Beam A1

 
Fig. 8 –Load-instantaneous deflection curves for 

beam A1 
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Fig. 9 –Load-instantaneous deflection curves for 

beam A2 
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Fig. 10 – Load-instantaneous deflection curves for 
beam A3 
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Table 2 – Instantaneous deflection (mm) for the 
total service load D+L 

Method  
Beam Nonlinear ACI Proposed 

model 
A1 1.8 2.6 2.2 
A2 6.6 7.2 6.4 
A3 8.9 10.2 9.5 

 
Fig. 11 to 13 show the relationships between 

the load and the midspan total deflection, 
including creep and shrinkage effects. For the ACI 
method, coefficient 0.2=ξ  is considered. 
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Fig. 11 - Load-total deflection curves for beam A1 
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Fig. 12 - Load-total deflection curves for beam A2 
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Fig. 13 - Load-total deflection curves for beam A3 
 

As it is observed in Fig. 11 to 13, the proposed 
model agrees very well with the nonlinear model 
for all the analyzed beams. This good adjustment 
is verified in all the levels of loading. 

However, the ACI method diverges enough of 
the nonlinear model. When the load is small and 
the beam is in the uncraked state, the method of 
ACI underestimates the total deflection. On the 
other hand, this method overestimates the total 
deflections for higher loads. Usually, the total 
deflection is overestimated for the service loads. 

Table 3 indicates the values of total deflection 
obtained with the three methods for the service 
load LD + . As it is observed, the ACI method 
overestimates the total deflection, except for the 
beam A1.  
 

Table 3 – Total deflection (mm) for the service 
load D+L 

Method  
Beam Nonlinear ACI Proposed 

model 
A1 10.5 7.6 10.1 
A2 15.4 21.1 16.4 
A3 17.9 29.9 18.9 

 
 

With the values of the Tables 2 and 3, it can be 
obtained the relationships between the additional 
deflection W∆  and the instantaneous deflection 

( )otW . Those relationships are presented in the 
Fig. 14.  
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Fig. 14 - Variation of ( )otWW∆  as a function of 
the load 

 
As it is observed, the relationship ( )otWW∆  

depends on the loading level. Then, the expression 
(11) represents only a rude approach to creep and 
shrinkage effects in the reinforced concrete beams 
deflections. That expression was determined 
empirically, based on a series of experimental 
results21,22. Consequently, it is only appropriate to 
reproduce the specific conditions adopted in those 
tests. 

In Fig. 15 the results obtained in 15 single span 
rectangular beams tested by Washa and Fluck24 are 
presented. The test data were extracted from 
Reference [25]. The creep coefficient and 
shrinkage strain were calculated according to 
CEB1, resulting mean values 5,3=ϕ  and 

. 51060 −−= xcsε
As it is observed, the three analyzed methods 

are satisfactory to reproduce the experimental 
results with a tolerance of ± . In this case, the 
ACI method is also satisfactory, but those beams 
served as base for attainment of the equation (11). 
However, this equation cannot be generalized for 
other test conditions.    
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Fig. 15 – Comparison of computed and measured 
long-time deflections 

 
 
7. CONCLUSIONS 
 

Based on the results presented, it may be 
concluded that the method of ACI is satisfactory 
for the evaluation of instantaneous deflections of 
reinforced concrete beams. The effective moment 
of inertia considers the tension stiffening effect in 
spite of ignoring the contribution of the 
reinforcement for uncraked sections. 

However, the ACI method is not appropriate for 
evaluation of the total deflections of reinforced 
concrete beams. When this method is used, the 
following mistakes are expected: 
  1. In structural elements that behave in an 
uncracked state, as solid slabs and beams 
submitted to loads of small intensity, the effects of 
the concrete delayed strains (creep and shrinkage) 
are underestimated. In this case, the design is not 
reliable in relation to the limit state of 
deformation.   
  2. In elements that behave in the cracked state, 
as most of the beams of buildings, the effects of 
the concrete delayed strains are overestimated. In 
this case, the design is anti-economical. 

Besides, the expression (11) is independent of 
the creep coefficient and of the shrinkage strain. 
That expression was determined empirically, based 
on a series of experimental results. Consequently, 
it is only appropriate to reproduce the specific 
conditions adopted in those tests. 
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Any general expression for the relationship 
( )otWW∆  should take into account the following 

factors:   
  - degree of cracking of the beam, measured 
through the relationship MM r ;   
  - steel rates ( )bdAs=ρ  and ( )bdAs′=′ρ ;   
  - value of the creep coefficient ϕ ;   
  - value of the shrinkage strain csε .   

Consequently, the method of ACI is not very 
appropriate for calculation of  deflections of 
reinforced concrete beams due to creep and 
shrinkage of concrete. 

The proposed model has the purpose of 
eliminating the mistakes of the ACI method. As it 
was shown, it reproduces the results obtained 
through the nonlinear analysis as well as the 
experimental results. Besides, the proposed model 
preserves the simplicity of the ACI method, what 
facilitates its employment in the structural design. 
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