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A B S T R A C T

Usually, reinforced concrete design codes indicate only one simplified method for second order analysis of
slender columns. The Eurocode 2 (EC2), on the other hand, adopts two simplified methods: one based on
nominal stiffness and other based on nominal curvature. It would be desirable that both methods could provide
similar solutions. However, this is not the case, as shown in this paper. On the contrary, the two EC2 simplified
methods can provide very different results, leaving the engineer uncertain about which method he should use.
The objective of this work is to compare these two simplified methods presenting the contradictions between
them. Several experimental results available in the literature have been analysed and compared. The method
based on the nominal curvature showed to be the most accurate; therefore, it is suggested to be used.

1. Introduction

The design of reinforced concrete slender columns requires the
consideration of the material and geometric non-linearities. Material
non-linearity is due to the non-linear behaviour of concrete, including
cracking, as well as the yielding of the reinforcement. Geometric non-
linearity arises from the need to verify the equilibrium in the deformed
structure. Bending moments in the initial undeformed configuration of
the column axis are called first order moments. The additional moments
caused by deformations are called second order moments.

Due to the importance of the columns for structural stability, design
codes [1–4] require that such additional second order effects be con-
sidered in the design of columns. Only in very short columns it is al-
lowed to ignore the second order effects.

When the column is slender and the second order effects are very
important, it is necessary to perform a complete non-linear analysis,
where non-linearities are considered appropriately. This analysis re-
quires the use of numerical methods, such as the finite element method
or the finite difference method, associated with iterative and incre-
mental techniques for solving the system of non-linear equations [5–8].
In cases of columns in usual buildings, it is allowed to adopt simplified
methods without the need of this complex non-linear analysis.

EC2 [4] adopts two simplified methods for second order analysis of
slender reinforced concrete columns: a method based on nominal
stiffness and a method based on nominal curvature. The first method is
similar to the moment magnification procedure adopts by ACI Building
Code [1]. The second method is the only simplified method re-
commended by CEB FIP Model Code 1990 [2] and by FIB Model Code

2010 [3].
The method based on nominal stiffness may be used for both iso-

lated members and whole structures, if nominal stiffness values are
estimated appropriately. The method based on nominal curvature is
mainly suitable for isolated members [4].

In both simplified methods, when the column is subjected to dif-
ferent first order end moments M01 and M02, an equivalent constant first
order moment M e0 is adopted. The equivalent first order moment is
given by

= + ≥M M M M0.6 0.4 0.4e0 02 01 02 (1)

where M01 and M02 have the same sign if they give tension on the same
side, otherwise opposite signs. Furthermore, ≥M M02 01 .

The two simplified methods of EC2 have been extensively studied in
order to improve their accuracy [9–11]. In these studies alternative
formulas for calculating the nominal stiffness or nominal curvature are
proposed, which are derived from non-linear analysis.

The purpose of this paper is to analyse these two simplified methods
as they are presented in EC2. It is not the intention of this work to
propose alternative formulas for design. Making a comparative analysis
of the design equations, contradictions between the two methods are
shown. Through the analysis of a series of experimental results avail-
able in the literature, it is possible to evaluate the accuracy of the two
methods. If both methods provide approximately equal solutions, it
would be acceptable for them to be suggested in EC2. However, due to
the large difference in results obtained with the two simplified methods
it is not appropriate to include them in the same design code.

As conclusion of this study, it is suggested to adopt the method
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based on nominal curvature for analysis of columns subjected to short
term loads. For columns subjected to sustained loads, it is suggested to
consider the additional creep eccentricity adopted in CEB FIP Model
Code 1990 [2]. The study is limited to columns subjected to compres-
sion and uniaxial bending.

2. Method based on nominal stiffness

In this method, the total design moment Md, including second order
moment, is given by =M ψ Md e1 0 , where ψ1 is the magnification factor
obtained from a linear analysis and M e0 is the equivalent first order
moment including the effects of imperfections. According EC2, ψ1 may
be expressed as

= +
−

ψ
β

N N
1

( / ) 1cr d
1 (2)

where β is a factor that depends on distribution of the moments, Nd is
the design axial load and Ncr is the buckling load based on nominal
stiffness EI .

For columns with constant cross-section and axial load, =β π c/2
0,

where c0 depends on the distribution of the first order moment. For a
constant first order moment, or when an equivalent moment is adopted,

=c 80 . Eq. (2) can only be used if <N Nd cr .
For a column with constant cross-section, the buckling load is given

by

=N π EI
lcr
e

2

2 (3)

where le is the effective length.
For a pin-ended column, le is the actual length of the column. For

braced members, the effective length may be reduced to take into ac-
count the stiffness of the beams connecting with the column.

The nominal stiffness EI is given by

= ⎛
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(4)

where =E 200s GPa is the modulus of elasticity of reinforcement and
Ecd is the design value of the modulus of elasticity of concrete, obtained
by

⎜ ⎟= ⎛
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ck
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(5)

where =γ 1.2E and fck is the characteristic compressive strength of
concrete in MPa.

The factor k1 depends on concrete strength and is given by

=k f f/20 , (with in MPa)ck ck1 (6)

The factor k2 depends on relative axial force ν and slenderness ratio
λ, being obtained by

= ≤k ν λ
170

0.202 (7)

with =ν N A f/( )d c cd , where =f f γ/cd ck c is the design compressive
strength of concrete and Ac is the area of the column cross-section; and

=λ l i/e , where i is the radius of gyration of the uncracked concrete
cross-section. The partial safety factor for concrete compressive
strength is taken as =γ 1.5c .

The effective creep ratio φef is defined as

= ∞φ φ
M
Mef

qp

e

0

0 (8)

where: ∞φ = final creep coefficient; M qp0 = first order bending moment
in quasi-permanent load combination (serviceability limit states); M e0 =
first order bending moment in design load combination (ultimate limit
states).

In Eq. (4), Ic is the moment of inertia of concrete cross-section and Is
is the second moment of area of reinforcement with respect to the
centre of the concrete area. Fig. 1 shows these properties for a rectan-
gular section with two layers of symmetric reinforcement. Bending
occurs in the direction of the height h of the cross-section.

The magnification factor ψ1 given in Eq. (2) tends to infinity when
=N Nd cr . In practice, one must have < <N Nd cr to avoid very high

values of ψ1. For a cross-section with fixed dimensions, a minimum
reinforcement ratio ρmin must be specified, as shown below.

Considering the expressions of Ic and Is given in Fig. 1, Eq. (4) can be
written as

= ⎡
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The slenderness ratio for the rectangular section of Fig. 1 is given by
=λ l h12 /e . Thus, the buckling load given in Eq. (3) can be written as

= ⎡
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Considering ≤ψ 51 , for example, Eq. (2) gives ≥ +N β N(1 0.25 )cr d.
Using Eq. (10) and substituting =N νbhfd cd, the following expression is
obtained for the minimum reinforcement ratio:

=
−

⎡

⎣
⎢

+
−

+
⎤

⎦
⎥ ≥ρ

δ E
β νλ f

π
k k E

φ
1

3(1 2 )
(1 0.25 )

(1 )
0

s

cd cd

ef
min 2

2

2
1 2

(11)

The minimum reinforcement area is given by =A ρ As c, min min .
In order to use Eq. (4), it is necessary to know the column re-

inforcement. Thus, the design of the cross-section subjected to the total
moment Md combined with the axial force Nd requires the use of an
iterative process. In each iteration, after the calculation of the steel area
As, the stiffness EI is updated and a new total moment must be cal-
culated. The design of the cross-section subjected to combined flexure
and axial force is made according to EC2 recommendations, assuming a
rectangular stress distribution for compressed concrete.

Initially, it is determined the steel area As1 for the axial force Nd
combined with the first order moment Moe. It must be ensured that

≥A ρ As c1 min . With this steel area, stiffness EI is obtained and the
magnification factor ψ1 is calculated through Eq. (2). Carrying out a
new reinforcement calculation for the axial force Nd and the moment

=M ψ Md e1 0 , the steel area As2 is obtained. The requested steel area As
is in the interval ≤ ≤A A As s s1 2.

For a generic value Asi of the steel area, one can calculate the design
resistant moment MRd that acts together with the design axial force Nd
in the ultimate limit state. The total bending moment is

=M ψ A M( )Sd si oe1 , where ψ A( )si1 is the magnification factor obtained
considering the steel area Asi. The solution As of this problem is such
that = − =f A M M( ) 0s Rd Sd and can be obtained through the bisection
iterative method, as illustrated in Fig. 2. The convergence of the process
is considered when − <M M M/ 0.01Rd Sd oe .

As a simplified alternative, provide ≥ρ 0.01, can be adopted

= ⎛

⎝
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⎞

⎠
⎟EI

φ
E I0.3

1 0.5 ef
cd c

(12)

This simplified alternative may be suitable as a preliminary step,

Fig. 1. Rectangular section with symmetrical reinforcement.
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followed by a more accurate calculation according to Eq. (4).
Fig. 3 shows the magnification factor ψ1 obtained using Eq. (4) and

the simplified stiffness given in Eq. (12). It can be observed that the
magnification factor ψ1 increases when the relative axial force ν in-
creases. On the other hand, it decreases by increasing reinforcement
ratio ρ. The magnification factor ψ1 is independent of the first order
moment M e0 .

The magnification factor ψ1 increases very rapidly when the load Nd
approaches the buckling load Ncr . In fact, this is what is verified through
the elastic solution of the column subjected to an eccentric load.
However, in several cases the buckling load is underestimated resulting
in an excessive and unrealistic value for the magnification factor ψ1 as
will be shown by comparison with results of experimental tests. In
several of these tests the column failure load was greater than the
buckling load calculated with Eq. (3), which prohibits the use of this
simplified method, as shown in Tables 2, 3.

3. Method based on nominal curvature

In this method, the total design moment is = +M M Md e0 2, where
M e0 is the equivalent first order moment, including the effects of im-
perfections, and =M N ed2 2 is the second order moment, with e2 being
the second order eccentricity. Taking the first order eccentricity as

=e M N/e d1 0 then =M N ed d d, where = +e e ed 1 2 is the total eccentricity
for the column design.

The second order eccentricity is given by

=e
l
c

χe
2

2

(13)

where χ is the curvature and c is a factor depending on the curvature
distribution.

For constant cross-section, = ≈c π10 ( )2 is normally used. If the first

order moment is constant, a lower value should be considered (8 is a
lower limit, corresponding to constant total moment). The value π2

corresponds to a sinusoidal curvature distribution. The value for con-
stant curvature is 8. In the examples presented in this paper, it is
adopted =c 10.

For members with constant symmetrical cross-section (including
reinforcement), it is adopted

= ⎛
⎝

⎞
⎠

χ K K
ε

d0.45r φ
yd

(14)

where:
Kr= correction factor depending on axial load; Kφ= factor for

taking account of creep; =ε f E/yd yd s= design yield strain of reinforce-
ment; =f f γ/yd yk s= design yield strength of reinforcement; fyk =
characteristic yield strength of reinforcement; =γ 1.15s = partial safety
factor for reinforcement; Es= modulus of elasticity of reinforcement;
d= effective depth.

The factor Kr should be taken as

= + −
+

≤K ω ν
ω

1
0.6

1r (15)

where =ν N A f/( )d c cd is the relative axial force and =ω A f A f/( )s yd c cd is
the mechanical reinforcement ratio.

The factor Kφ should be taken as

⎜ ⎟= + ⎛
⎝

+ − ⎞
⎠

≥K
f λ φ1 0.35

200 150
1φ

ck
ef (16)

where fck is given in MPa, λ is the slenderness ratio and φef is the ef-
fective creep ratio given in Eq. (8).

It is observed that Kφ decreases with increasing slenderness ratio λ,
indicating that creep can be neglected for very slender columns. For

≥ +λ f52.5 0.75 ck it results =K 1φ , indicating that creep will not be
considered for these columns. This is not correct and contradicts EC2
itself, which allows us to ignore the effects of creep if ≤∞φ 2, ≤λ 75
and ≥e h/ 11 simultaneously. Eq. (16) needs to be revised.

The CEB-FIP Model Code 1990 [2] and the FIB Model Code 2010 [3]
adopt this same EC2 formulation in order to consider second order ef-
fects in columns design. However, there are differences in the con-
sideration of the creep effects. In FIB Model Code 2010 the long term
deformation due to creep is taken into account as pre-curvature of the
cross-section. In CEB-FIP Model Code 1990 the creep effects are in-
troduced as an additional eccentricity ec given by

⎜ ⎟= ⎡

⎣
⎢

⎛
⎝ −

⎞
⎠

− ⎤

⎦
⎥e e

φ
N N

exp
/ 1

1c
ef

cr Sg
1

(17)

where NSg denotes the axial load under the quasi-permanent combina-
tion of actions.

The critical Euler-load Ncr is given in Eq. (3) considering =EI E Icm c,
where Ecm is the modulus of elasticity of concrete which may be ob-
tained from Eq. (5) by making =γ 1E . The second order eccentricity is
obtained with the use of Eqs. (13)–(15), considering =K 1φ . The total
eccentricity is = + +e e e ed c1 2 and the total moment is =M N ed d d.

Defining a new magnification factor =ψ M M/d e2 0 and substituting
=M N ed d d and =M N ee d0 1, results =ψ e e/d2 1. It is observed that in this

method the magnification factor depends on the first order eccentricity
(or the first order moment), which does not occur with the method
based on nominal stiffness.

It should be noted that to calculate the second order eccentricity e2 it
is necessary to know the column reinforcement. The dimensioning of
the cross-section subjected to the total moment =M N ed d d and the axial
force Nd requires the use of an iterative process. In each iteration, after
the calculation of the steel area As, the total eccentricity ed is updated
and a new total moment must be calculated. Since =M ψ Md e2 0 , it is
possible to employ the same bisection iterative method described
above. The requested steel area As is in the interval ≤ ≤A A As s s1 2,

Fig. 2. Bisection iterative method.

Fig. 3. Magnification factor ψ1 for different reinforcement ratios.
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where As1 is the area obtained for =K 0r and As2 is the area obtained
considering =K 1r . To avoid this iterative process, one can take =K 1r

as a conservative simplification.
Fig. 4 compares the magnification factors ψ1 and ψ2 obtained using

the two simplified methods adopted by EC2. It can be seen that the
magnification factor ψ2 decreases with increase of the relative first
order eccentricity e h/1 . The magnification factor ψ1 is independent of
e h/1 . On the other hand, the magnification factor ψ2 increases with the
increase of the reinforcement ratio ρ, unlike what happens with the
factor ψ1. Therefore, there is a clear contradiction between these two
simplified methods.

The variation of the magnification factors as a function of the re-
lative axial force ν is shown in Fig. 5. It can be observed that the two
magnification factors have completely different behaviours. While the
factor ψ1 increases with increasing axial force, the opposite occurs with
the factor ψ2. This shows another serious divergence between the two
simplified methods.

4. Comparison with experimental results

The magnification factors ψ1 and ψ2 obtained with the simplified
methods are compared with the magnification factor ψexp determined
from tests performed by other authors. In all tests, the columns were
subjected to compression and uniaxial bending. In cases where the
column was submitted to different first order end moments, the
equivalent first order moment M e0 was considered.

For each column all variables necessary to compute ψ1 and ψ2 are
known. The failure load obtained in the experimental test is Nu and the

first order moment is =M N eu u0 1, where e1 is the equivalent first order
eccentricity used in the test. The resistant moment MRu is determined
through the resistance analysis of the column cross-section subjected to
the axial force Nu. This analysis is made according to EC2 re-
commendations, assuming a rectangular stress distribution for com-
pressed concrete. Therefore, the experimental magnification factor is
given by =ψ M M/Ru uexp 0 . In this sectional resistance analysis, the partial
safety factors γE, γc and γs are taken with values equal to 1.0. All tested
columns have a rectangular section as shown in Fig. 1.

The accuracy of the simplified methods is verified through the re-
lation =R ψ ψ/teo exp , where ψteo is the theoretical magnification factor.
The following convention is used to distinguish the simplified methods
analysed:

• Method 1 = method based on nominal stiffness with EI obtained
from Eq. (4).

• Method 2 = method based on nominal stiffness with EI obtained
from Eq. (12).

• Method 3 = method based on nominal curvature with Kr obtained
from Eq. (15) and Kφ from Eq. (16).

• Method 4 = method based on nominal curvature with =K 1.0r and
Kφ obtained from Eq. (16).

• Method 5 = method based on nominal curvature with Kr obtained
from Eq. (15), =K 1.0φ and creep effects given by Eq. (17).

• Method 6 = method based on nominal curvature with =K 1.0r ,
=K 1.0φ and creep effects given by Eq. (17).

Table 1 shows summary information about the columns. Full details
may be obtained in the references listed in the table. The tests comprise
a total of 115 pin-ended columns, being 83 columns with equal mo-
ments at both ends ( =M M/ 1.001 02 ) and 32 columns with unequal mo-
ments ( ≠M M/ 1.001 02 ). Of these 83 columns with equal first order end
moments, 20 are subjected to sustained load. All the other 95 columns
were submitted to short term load. For the tests reported in reference
[12], the concrete strength is based on prisms with the same cross-
section of the columns. For the other tests, the cylinder strengths are
considered.

5. Results for columns under sustained load

Goyal and Jackson [12] tested 20 columns under sustained load,
being 3 columns with slenderness ratio =λ 55, 14 columns with =λ 83
and 3 columns with =λ 125. The range of the main parameters is given
in Table 1.

Table 2 presents the results obtained with the six simplified
methods. This table shows the mean value Rm, the standard deviation σR
and the coefficient of variation =V σ R/R R m of the ratio =R ψ ψ/teo exp .
The value n is the number of columns that are possible to analyse with a
simplified method. It is observed that not all 20 columns could be
analysed with the methods based on nominal stiffness because the

Fig. 4. Magnification factors for the two simplified methods of EC2.

Fig. 5. Magnification factors as a function of the relative axial force.

Table 1
Columns used for checking the simplified methods (parameter range: min-max).

Parameters Goyal and
Jackson
[12]

Goyal and
Jackson
[12]

Melo [13] Kim and
Yang [14]

Leite et al.
[15]

columns 20 26 21 16 32
e1/h 0.17–0.50 0.17–0.50 0.05–0.50 0.30 0.04–0.32
ν 0.15–0.65 0.16–0.67 0.12–0.57 0.10–0.45 0.09–0.77
λ 55–125 55–125 58–87 10–104 69–104
fck 19.9–23.6 19.9–23.6 33.9–45.8 25.5–86.2 29.5–93.2
φef 0.8–1.6 0 0 0 0
ρ% 1.7–2.4 1.7–2.4 1.57 2.0–4.0 2.26–3.39
M01/M02 1.0 1.0 1.0 1.0 −0.5; 0.0;

0.5
loading sustained short term short term short term short term
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failure load Nu observed in the test was greater than the buckling load
Ncr .

Table 2 clearly shows that the method based on nominal stiffness is
excessively conservative. The mean values =R 1.79m and =R 3.17m
make this method unacceptable. Moreover, this method is applicable
only when the design load is small compared to the buckling load. Very
slender or heavily loaded columns should not be analysed by this
method.

The method based on nominal curvature, as presented in EC2,
provides good results but is unconservative. This is because Eq. (16)
provides =K 1.0φ for columns with =λ 83 and =λ 125. Thus, the creep
effects are not included in this method.

On the other hand, a conservative design is obtained if the effects of
creep are included through the additional eccentricity given in Eq. (17).

The mean value Rm is very close to 1.0 in the two options for calculating
the factor Kr (Method 5 and Method 6). In addition, the coefficient of
variation VR is very small with any of these options for calculating Kr .

Comparing Method 1 with Method 2, there is a large difference in
the mean value Rm. This is because the magnification factor ψ1 depends
on the stiffness EI which is strongly influenced by reinforcement ratio.
On the other hand, the mean values Rm obtained with the methods
based on nominal curvature are little dependent on the definition of the
factor Kr . In this way, it can be adopted =K 1.0r avoiding the use of the
iterative process described above.

Figs. 6–8 show the histograms of the ratio =R ψ ψ/teo exp obtained
with the methods 1, 3 and 5.

6. Results for columns under short term load

The six simplified methods are compared with tests of 95 columns

Table 2
Results for columns under sustained load.

Method n Rm σR VR

1 19 1.79 0.71 0.40
2 13 3.17 1.88 0.59
3 20 0.91 0.09 0.10
4 20 0.93 0.12 0.13
5 20 1.02 0.09 0.09
6 20 1.03 0.12 0.12

Fig. 6. Histogram of =R ψ ψ/1 exp for method 1 (sustained load).

Fig. 7. Histogram of =R ψ ψ/2 exp for method 3 (sustained load).

Fig. 8. Histogram of =R ψ ψ/2 exp for method 5 (sustained load).

Table 3
Results for columns under short term load.

Method n Rm σR VR

1 69 2.05 1.35 0.66
2 61 1.56 0.87 0.56
3 95 1.31 0.41 0.31
4 95 1.37 0.50 0.36

Fig. 9. Histogram of =R ψ ψ/1 exp for method 1 (short term load).
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subjected to short term loads. The range of the main parameters is given
in Table 1. Since creep is not included in the analysis, methods 5 and 6
are the same as methods 3 and 4, respectively.

Table 3 shows the results obtained with the simplified methods. It
should be noted that not all 95 columns could be analysed with the
methods based on nominal stiffness because the failure load Nu ob-
served in the test was greater than the buckling load Ncr or the mag-
nification factor ψ1 was excessive ( >ψ 251 ).

Table 3 shows that the method based on nominal stiffness is very
conservative. The mean value =R 2.05m indicates that this method is
uneconomical. Moreover, this method is applicable only when the de-
sign load is small in relation to the buckling load or the column is not
very slender. Again, there is a large difference in the mean values Rm
obtained with methods 1 and 2. This indicates a discrepancy between
the expressions for the stiffness EI provided by the EC2, as was already
shown in Fig. 3. The mean values Rm obtained with the methods based
on nominal curvature are little dependent on the definition of the factor
Kr and can be adopted =K 1.0r .

Figs. 9 and 10 show the histograms of the ratio =R ψ ψ/teo exp ob-
tained with the methods 1 and 3.

7. Conclusions

The main reinforced concrete design codes indicate only one sim-
plified method for second order analysis of slender columns. In contrast,
the Eurocode 2 adopts two simplified methods: a method based on
nominal stiffness and a method based on nominal curvature. By finding
two distinct methods suggested in the same design code, the engineer
chooses the one that seems most convenient, imagining that they pro-
vide similar design solutions. Unfortunately, this is not the case. On the
contrary, the two methods give very different results as was shown in
this work.

The method based on nominal stiffness is excessively conservative.
Moreover, this method is applicable only when the design load is small
in relation to the buckling load or the column is not very slender. Very
slender or heavily loaded columns should not be analysed by this
method.

The method based on nominal curvature, as presented in EC2,
provides good results but is unconservative for columns under sustained
loads. This is due to the factor Kφ that takes into account the creep
effects. This factor decreases with increasing slenderness ratio λ, in-
dicating that creep can be neglected for very slender columns. For

≥ +λ f52.5 0.75 ck it results =K 1φ , indicating that creep will not be
considered for these columns. The equation for this factor needs to be
revised.

However, when creep effects are introduced as an additional ec-
centricity ec, as adopted in CEB-FIP Model Code 1990, the method
based on nominal curvature provides good results and is conservative.
Therefore, this is the simplified method that should be chosen for de-
sign of reinforced concrete slender columns.
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