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The purpose of this paper is to present a non-linear model for analysis and design of slender reinforced-concrete
columns subjected to uniaxial and biaxial bending. This model considers both material and geometric non-linearities, as
well as creep effects. The structural analysis is performed by the finite-element method associated with an iterative
process to solve the system of non-linear equations. The column may have an arbitrary polygonal cross-section, including
openings. Green’s theorem is used to perform the integration at the level of the cross-sections, which is greatly
simplified with the use of a new parabola–rectangle diagram proposed for concrete in compression. This new diagram
provides the correct value of the tangent modulus of elasticity of concrete, allowing its use for non-linear analysis of
slender columns. By changing the strain value corresponding to the maximum stress, it is possible to use a single stress–
strain diagram for displacement calculation and rupture verification, which facilitates the design of slender columns. The
accuracy of the method is demonstrated through the analysis of several columns tested experimentally by other authors.

Notation
Acc compressed area in column cross-section
As total area of reinforcement in column cross-section
Asi area of each bar of reinforcement
b width of rectangular cross-section
Ecd design modulus of elasticity of concrete
Ecm tangent modulus of elasticity of concrete
Ec,par modulus of elasticity obtained with

parabola–rectangle diagram
Es modulus of elasticity of reinforcement
ex eccentricity of axial force in the x-direction
ey eccentricity of axial force in the y-direction
e1 first-order eccentricity
Fd design axial load
Fg sustained load
Fu failure load
Fu,exp experimental failure load
Fu,p theoretical rupture load, considering p% of

post-peak-stress reduction
Fu,teo theoretical failure load
Fu,0 theoretical rupture load, considering p= 0
fcd design compressive strength of concrete
fck characteristic compressive strength of concrete
fcm mean compressive strength of concrete
fy mean yield strength of reinforcement
fyd design yield strength of reinforcement
fyk characteristic yield strength of reinforcement
h height of cross-section
L length of column
M bending moment
Mx bending moment in the x-direction

(around the y-axis)
My bending moment in the y-direction

(around the x-axis)

m number of reinforcement bars in cross-section
N axial force
n exponent of parabola–rectangle diagram
p percentage of stress reduction after stress peak

in concrete
R ratio between theoretical failure load and

experimental failure load
Rm mean value of R
t height of a rectangular cross-section
uo axial displacement in the z-direction
VR coefficient of variation of R
W transverse displacement
Wx transverse displacement in the x-direction
Wy transverse displacement in the y-direction
(xsi, ysi) coordinates of generic reinforcement bar
γc partial safety factor for concrete
γcE partial safety factor for modulus of elasticity of

concrete
γs partial safety factor for reinforcement
εc compressive strain of concrete
εco modified strain corresponding to the maximum

stress in concrete
εc2 strain corresponding to maximum stress in concrete
εcu2 rupture strain of concrete
εo axial strain
εs strain of reinforcement
εy yield strain of reinforcement
εz normal strain
ζ ageing coefficient
λ slenderness ratio
λx slenderness ratio in the x-direction
λy slenderness ratio in the y-direction
σc concrete compressive stress
σR standard deviation of R
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σs steel stress
σsi stress in each bar of reinforcement
ϕ creep ratio
ϕef effective creep ratio
χx curvature in the plane z–x
χy curvature in the plane z–y

Introduction
In the design of slender reinforced-concrete columns, it is
necessary to consider material and geometric non-linearities.
The material non-linearity is due to the non-linear behaviour
of the concrete and of the reinforcement after the yielding. The
geometric non-linearity arises from the need to verify the equi-
librium in the deformed structure. Bending moments in the
initial undeformed configuration of the column axis are called
first-order moments. The additional moments caused by defor-
mations are called second-order moments. Owing to the
importance of this element for structural stability, design
codes, such as CEB-FIP Model Code 1990 (CEB, 1990),
Eurocode 2 (BSI, 2004), fib Model Code 2010 (fib, 2010) and
ACI 318-14 (ACI, 2014), require that the additional second-
order effects be considered in the design of columns. Only in
very short columns is it allowed to ignore the second-order
moments (Narayanan and Beeby, 2005).

For columns with small or medium slenderness, design
codes allow the use of simplified methods to consider second-
order and creep effects in the design of concrete columns.
Eurocode 2 (BSI, 2004), for example, adopts two simplified
methods for second-order analysis of slender reinforced-
concrete columns: a method based on nominal stiffness and a
method based on nominal curvature. The first method is
similar to the moment magnification procedure adopted by
ACI 318-14 (ACI, 2014). The second method is also rec-
ommended by CEB-FIP Model Code 1990 (CEB, 1990) and
by fib Model Code 2010 (fib, 2010). These simplified methods
have been extensively studied in order to improve their accu-
racy (Barros et al., 2010; Bonet et al., 2007, 2011).

When the column is very slender and the second-order effects
are very important, it is necessary to perform a complete
non-linear analysis, where non-linearities are considered appro-
priately. This analysis requires the use of numerical methods,
such as the finite-element method or the finite-difference
method, associated with iterative and incremental techniques for
solving the system of non-linear equations (Bouchaboub and
Samai, 2013; Kwak and Kim, 2004; Lou et al., 2015; Pires and
Silva, 2014).

The objective of this paper is to present a non-linear model for
analysis and design of slender reinforced-concrete columns
subjected to uniaxial and biaxial bending. This model con-
siders both material and geometric non-linearities, as well as
creep effects. The structural analysis is performed using the

finite-element method. The Broyden–Fletcher–Goldfarb–
Shanno (BFGS) iterative method is used to solve the system of
non-linear equations. Columns may have an arbitrary poly-
gonal cross-section, including openings. Green’s theorem is
used to perform the integrations required to determine the sec-
tional forces. A new parabola–rectangle diagram for com-
pressed concrete is also proposed in this paper. The accuracy
of the method is demonstrated through the analysis of several
columns tested experimentally by other authors. As a continu-
ation of this paper, the non-linear model can be used to verify
the simplified methods presented in the design codes.

Constitutive models for materials
When comparing the theoretical model with experimental
results, the mean yield strength of reinforcement fy and the
mean compressive strength of concrete fcm should be con-
sidered. The concrete in tension is neglected in the analysis
even if uncracked.

Figure 1 shows the stress–strain diagram adopted for reinfor-
cing steel. The value of the modulus of elasticity Es is assumed
equal to 200 GPa. This diagram is employed for tension and
compression, limiting the tensile strain to 10‰ as a failure cri-
terion. For concrete in compression the parabola–rectangle
diagram shown in Figure 1 is adopted. The stress and strain
are represented by their absolute values.

According to Eurocode 2 (BSI, 2004), the strains εc2 and εcu2
are given by

1: εc2ð‰Þ ¼ 2�0; if fck � 50MPa

2: εc2ð‰Þ ¼ 2�0þ 0�085 ð fck � 50Þ0�53; if fck . 50MPa

3: εcu2ð‰Þ ¼ 3�5; if fck � 50MPa

Steel Concrete

Parabola

0·85fcm

σs
σc

fy

Es = 200 GPa

εy = fy/EsEs
1

εy
εs εc2

εcu2
εc10‰

Figure 1. Stress–strain diagrams for materials
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4: εcu2ð‰Þ ¼ 2�6þ 35
90� fck
100

� �4

; if fck . 50MPa

In these equations, fck is the characteristic compressive cylinder
strength of concrete in MPa. The equation of the parabola is
given by

5: σc ¼ 0�85fcm 1� 1� εc
εc2

� �n� �
; for 0 � εc � εc2

where 0·85fcm is the maximum stress that occurs when εc = εc2.

According to Eurocode 2 (BSI, 2004), the exponent n is
given by

6: n ¼ 2; if fck � 50MPa

7: n ¼ 1�4þ 23�4 90� fck
100

� �4

; if fck . 50MPa

The parabola–rectangle diagram, with these definitions for the
exponent n, is only recommended for the design of cross-sec-
tions. It should not be used for non-linear analysis because the
derivative dσc/dεc does not provide a coherent value for the
modulus of elasticity, particularly for concrete with
fck > 50 MPa. Using Equation 5 and taking the derivative
dσc/dεc when εc = 0, one can obtain the tangent modulus of
elasticity Ec,par = 0·85n fcm/εc2 provided by the parabola–rec-
tangle diagram.

The tangent modulus of elasticity for normal weight concrete
can be estimated by

8: Ecm ¼ 22
fcm
10

� �0�3
: GPa

where fcm = fck + 8 MPa is the mean compressive strength of
concrete, as recommended by Eurocode 2.

Figure 2 shows the variations of Ec,par and Ecm as a function
of the characteristic compressive strength of concrete fck.

As shown in Figure 2, the parabola–rectangle diagram gives
incorrect values for the modulus of elasticity of concrete. For
this reason, this diagram should not be used for non-linear
analysis. Eurocode 2 presents a stress–strain relation for non-
linear structural analysis, but it is too complex to perform
explicit integrations through Green’s theorem.

To correct this problem of the parabola–rectangle diagram, it
is proposed that

9: n ¼ Ecm εc2
0�85fcm

be the value of the exponent n to be used in Equation 5.

With this new definition of n, we obtain the tangent modulus
of elasticity Ec,par =Ecm at the origin of the stress–strain
diagram. This modified parabola–rectangle diagram can be
used for non-linear analysis, unlike the original parabola–
rectangle diagram of Eurocode 2 (BSI, 2004). It has the
advantage of being simpler than the stress–strain relation for
non-linear structural analysis adopted by Eurocode 2. The use
of the new parabola–rectangle diagram facilitates the inte-
grations necessary to obtain the sectional forces through
Green’s theorem.

Figure 3 shows the stress–strain curves obtained with the new
parabola–rectangle diagram for several concrete strength
classes. To include creep effects, the strains εc2 and εcu2 must be
multiplied by (1+ϕef), where ϕef is the effective creep ratio.
The effective modulus of elasticity is given by Ec,par =
Ecm/(1 +ϕef).

The curves of Figure 3 do not show a descending part after
the maximum stress, as is experimentally observed. This des-
cending part of the stress–strain curve depends strongly on the
specimen or member geometry, the boundary conditions and
the possibilities for load redistribution in the structure. The
descending portion of the stress–strain relation is size depen-
dent and therefore not only a material property (fib, 2010).
Previous numerical tests have shown that the rupture loads
obtained with the present model do not depend much on the
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Figure 2. Modulus of elasticity as a function of concrete
compressive strength
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descending portion of the stress–strain diagram. Thus, to sim-
plify the analysis, it is considered that the stress is constant
after the strain εc2, as shown in Figure 3. Moreover, the con-
sideration of a constant stress after the strain εc2 allows the use
of a single stress–strain diagram for the dimensioning of
slender columns, as shown in the section ‘Considerations for
the design of slender columns’.

Figure 4 shows the ratio between the theoretical rupture load
Fu,p considering p% of stress reduction and the theoretical
rupture load Fu,0 considering that the stress is constant after
the strain εc2. This figure was obtained for a column of square
cross-section under uniaxial bending with different slenderness
ratios λ. As can be seen, the descending portion of the stress–
strain diagram of concrete only influences the rupture load for
very short columns and when considering a very large percen-
tage p. However, even in these cases, the reduction in the
rupture load is small.

Finite-element analysis
Figure 5 shows a column subjected to the design axial load Fd
applied at its ends. The column may have an arbitrary poly-
gonal cross-section, including internal openings. Owing to the
shape of the cross-section and the arbitrary point of appli-
cation of the load, the column is subjected to biaxial bending.
In a generic cross-section, the eccentricities of the axial force
are ex and ey. These eccentricities may vary along the column
axis, depending on the first-order moment diagram.

The structural analysis is performed using the finite-element
method, where the column axis is discretised in linear elements
of two nodes, with five degrees of freedom per node. Each
node has a displacement in the z-direction, a displacement in
the x-direction, a displacement in the y-direction, a bending
rotation around the x-axis and a bending rotation around the
y-axis. The torsion of the element is neglected. The stiffness
matrix of the element is symmetric and has ten rows and ten
columns. The stiffness matrix and the vector of nodal non-
linear actions are obtained by numerical integration of Gauss–
Legendre, using three integration points along the element axis
(Zienkiewicz and Taylor, 2000).

A point located on the element axis undergoes an axial displa-
cement uo(z) and transverse displacements Wx(z) and Wy(z) in
the directions z, x and y, respectively. These displacements
are interpolated from the nodal displacements using standard
interpolation functions (Araújo, 2014). For the axial displace-
ment, a linear interpolation is used; for the transverse
displacements, cubic polynomials are adopted. Employing the
well-known strain–displacement relations, the normal strain εz
at coordinates (x, y, z) is given as

10: εz ¼ εo þ yχy þ xχx

where εo= εo(z) is the axial strain, χy=−∂2Wy/∂z2 and
χx=−∂2Wx/∂z2 are the curvatures in the z–y and z–x planes,
respectively.
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Figure 3. Adopted stress–strain diagrams for concrete
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The axial strain is given by

11: εo ¼ @uo
@z

þ 1
2

@Wy

@z

� �2

þ @Wx

@z

� �2
" #

where the last term introduces the geometric non-linearity of
the problem.

In this formulation, a positive sign indicates tensile strain and
a negative sign indicates compressive strain.

Figure 5 shows the rule for numbering the vertices of the poly-
gonal cross-section. The vertices of the outer contour are
numbered counterclockwise. If the section is hollow, the inner
contour is numbered clockwise. The last vertex must be coinci-
dent with the first vertex to close the polygon.

The cross-section has m reinforcement bars. A generic bar has
an area equal to Asi and coordinates (xsi, ysi). Using Equation
10, one can calculate the strain in each steel bar. The stress σsi
in each bar is obtained by employing the stress–strain diagram
for reinforcing steel. Similarly, one can calculate the concrete
stress σc at any point of the cross-section. Applying the equili-
brium equations, the following sectional forces are obtained
in a cross-section located at the coordinate z along the
column axis

12: N ¼
ð
Acc

σcdAþ
Xm
i¼1

σsiAsi

13: Mx ¼
ð
Acc

σcxdAþ
Xm
i¼1

σsiAsixsi

14: My ¼
ð
Acc

σcydAþ
Xm
i¼1

σsiAsiysi

where N is the axial force, Mx is the bending moment in the x
direction (around the y axis) and My is the bending moment in
the y direction (around the x axis).

It should be noted that the integrations are carried out only in
the compressed area Acc, because the concrete tensile strength
is neglected in the column design. In several studies (Barros
et al., 2010; Bouchaboub and Samai, 2013; Kwak and Kim,
2004; Lou et al., 2015), these integrals are solved by discretis-
ing the column cross-section into small area elements or layers.
This procedure, besides requiring great computational effort,
presents difficulty in accurately representing the arbitrary poly-
gonal geometry of the cross-section. By employing rectangular
area elements, for example, a very refined discretisation is

required so that the geometry of the polygonal cross-section
can be well represented.

Bonet et al. (2004) present two alternative methods to solve
this problem. The integrations are evaluated using a Gauss
quadrature. However, both methods decompose the integration
area into thick layers parallel to the most tensile stressed fibre,
whose definition depends on the constitutive equation of the
concrete.

These drawbacks can be avoided using Green’s theorem, as
detailed in Araújo (2014). In this solution, the area integrals
are replaced by line integrals. This semi-analytical integration
requires little computational effort and allows one to accu-
rately represent the geometry of the polygonal cross-section.
The sectional forces N, Mx and My are used to obtain the non-
linear nodal actions, which are derived from the application of
the principle of virtual work.

To perform the integrations given in Equations 12 to 14, the
compressed area is divided into two regions. Using Equation
10, one obtains the equations of the lines εz=0 (neutral axis)
and εz= εc2. By determining the intersections of these two lines
with the sides of the cross-section, the parabola and rectangle
regions shown in Figure 6 can be defined. In the polygon
named ‘parabola’, the compressive stress in concrete is given
by Equation 5 with n obtained from Equation 9. In the
polygon named ‘rectangle’, we have σc = 0·85fcm. Using Green’s
theorem, the integrals on the two regions are replaced by line
integrals along the sides of these two polygons.

The structural analysis is carried out through an iterative and
incremental process. In a given iteration, there will be an
imbalance between the vector of non-linear nodal actions
and the vector of nodal loads applied on the column. The
BFGS method is used to cancel the imbalance and find the
deformed configuration of the column for a given loading.
Then the loads are increased and the iterative process is again
employed.

Area Acc
Rectangle

Parabola
εz  = εc2

εz  = 0

σc = 0

x

y

Figure 6. Subdivision of cross-section for use of Green’s theorem
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This procedure is repeated successively until the occurrence of
failure on an integration point of the finite element, or until
the displacements begin to diverge. Failure is assumed when
the strain in a reinforcement bar reaches the value 10‰. The
failure can also occur by concrete crushing, when the compres-
sive strain at a vertex of the polygonal cross-section reaches
εcu2. If the cross-section is fully compressed, the failure is veri-
fied on a fibre located at a distance (1− εc2/εcu2)h from the
most compressed vertex, where h is the height of the cross-
section measured perpendicular to the neutral axis. If the
strain in this fibre reaches εc2, the occurrence of concrete
crushing is considered.

Comparison with experimental results
The model was used to analyse 124 columns tested by
other authors, with 20 columns subjected to sustained
loads and 104 columns subjected to short-term loads. Tests
include 95 columns subjected to uniaxial bending and
29 columns subjected to biaxial bending. The pin-ended
columns were subjected to an axial load with constant eccentri-
cities along the axis. The theoretical failure load Fu,teo is com-
pared with the experimental failure load Fu,exp obtained in
the tests.

Previous tests have indicated that the size of the element has
little influence on the results. Since the load is applied in con-
stant increments, the model does not capture the post-peak
softening response. Thus, all columns were discretised in ten
elements and the load was applied in 50 equal increments,
obtaining satisfactory accuracy.

Columns tested by Goyal and Jackson
Goyal and Jackson (1971) tested columns subjected to uniaxial
bending, with 26 columns under short-term load and 20
columns under sustained load. The slenderness ratio λ ranges
from 55 to 125. The columns have square cross-section.

The columns under long-term load were subjected to a sus-
tained load Fg for a period of 6 months. After this period, the
load was increased until failure of the column for the load Fu.
The creep coefficient measured in the test specimens was
ϕ=2·4. The effective creep ratio is given by ϕef = ζ ϕ Fg/Fu,
where ζ=0·8 is the ageing coefficient.

Tables 1 and 2 present the results obtained for the columns
tested by Goyal and Jackson. For columns subjected to short-
term loads, the mean value of the ratio R=Fu,teo/Fu,exp is

Table 1. Columns subjected to short-term loads tested by Goyal and Jackson (1971)

Column fcm: MPa e1: cm Fu,exp: kN Fu,teo: kN Fu,teo/Fu,exp

L=182 cm; λ=83; fy = 352 MPa; As = 1·42 cm2

A1 19·9 3·81 33·1 33·1 1·00
A2 19·9 3·81 33·4 33·1 0·99
C1 23·3 2·54 44·5 46·3 1·04
C2 23·3 2·54 46·8 46·3 0·99
E1 21·9 1·27 66·7 64·7 0·97
E2 21·9 1·27 65·4 64·7 0·99
G1 22·2 1·91 55·4 53·2 0·96
G2 22·2 1·91 53·0 53·2 1·00
L=182 cm; λ=83; fy = 310 MPa; As = 1·00 cm2

I1 22·7 1·27 60·0 57·6 0·96
I2 22·7 1·27 57·4 57·6 1·00
K1 22·8 1·91 46·6 45·2 0·97
K2 22·8 1·91 45·6 45·2 0·99
M1 22·9 2·54 37·1 37·1 1·00
M2 22·9 2·54 37·0 37·1 1·00
L=122 cm; λ=55; fy = 310 MPa; As = 1·00 cm2

O1 23·6 1·27 82·3 79·0 0·96
O2 23·6 1·27 92·4 79·0 0·85
P1 23·6 1·91 64·5 61·9 0·96
P2 23·6 1·91 72·7 61·9 0·85
Q1 19·9 2·54 51·4 46·8 0·91
Q2 19·9 2·54 48·9 46·8 0·96
L=274 cm; λ=125; fy = 310 MPa; As = 1·00 cm2

R1 21·4 1·27 33·5 33·5 1·00
R2 21·4 1·27 31·1 33·5 1·08
S1 20·9 1·91 23·0 25·5 1·11
S2 20·9 1·91 24·3 25·5 1·05
T1 20·7 2·54 19·4 21·9 1·13
T2 20·7 2·54 20·6 21·9 1·06
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Rm=0·99, the standard deviation is σR=0·06 and the coeffi-
cient of variation is VR= σR/Rm=0·06. For columns under sus-
tained loads, Rm=0·94, σR=0·07 and VR=0·08.

Figure 7 compares the measured and predicted variation of the
moment M=F(e1 +W ) with the load N=F for the column C1
tested by Goyal and Jackson. The points represent the exper-
imental results and the curve corresponds to the model. The
variation of the first-order moment M=Fe1, valid for short
columns, is also presented in Figure 7.

Columns tested by Tsao
Tsao (1991) tested six columns with square cross-sections and
seven columns with L-shaped cross-sections, both types being
subjected to biaxial bending. All columns have a length
L=122 cm and were subjected to short-term loads. For the
columns with square cross-section, the slenderness ratios are
λx= λy=55. For columns with L-shaped cross-section, the slen-
derness ratios are λx=58 and λy=43.

Tables 3 and 4 present the results obtained for the columns
tested by Tsao. For these 13 columns, Rm=1·00, σR=0·09 and
VR=0·09.

Columns tested by Melo
Melo (2009) tested 21 columns of rectangular cross-section
subjected to uniaxial bending. All columns have a steel area
As = 4·71 cm2. The yield strength of reinforcement is fy = 595
MPa. Table 5 presents the results obtained for the columns
tested by Melo. For these 21 columns, Rm=0·88, σR=0·08
and VR=0·09.

Columns tested by Kim and Yang
Kim and Yang (1995) tested 28 columns of square cross-
section under uniaxial bending. The first-order eccentricity is
e1 = 2·4 cm for all columns. The columns have lengths
L=24 cm, L=144 cm and L=240 cm, corresponding to slen-
derness ratios λ=10, λ=62 and λ=104, respectively. The yield
strength of reinforcement is fy = 387 MPa.

Table 2. Columns subjected to sustained loads tested by Goyal and Jackson (1971)

Column fcm: MPa e1: cm ϕef Fu,exp: kN Fu,teo: kN Fu,teo/Fu,exp

L=182 cm; λ=83; fy = 352 MPa; As = 1·42 cm2

A 19·9 3·81 1·2 32·0 31·4 0·98
B 19·9 3·81 0·8 32·3 32·3 1·00
C 23·3 2·54 1·2 42·9 41·6 0·97
D 23·3 2·54 0·8 40·4 43·2 1·07
E 21·9 1·27 1·3 59·4 55·8 0·94
F 21·9 1·27 0·9 59·3 58·1 0·98
G 22·2 1·91 1·3 50·1 46·6 0·93
H 22·2 1·91 0·9 49·8 48·3 0·97
L=182 cm; λ=83; fy = 310 MPa; As = 1·00 cm2

I 22·7 1·27 1·6 44·3 44·3 1·00
J 22·7 1·27 0·8 58·2 50·0 0·86
K 22·8 1·91 1·3 40·9 38·0 0·93
L 22·8 1·91 0·8 43·8 40·3 0·92
M 22·9 2·54 1·2 36·4 32·8 0·90
N 22·9 2·54 0·8 36·0 34·2 0·95
L=122 cm; λ=55; fy = 310 MPa; As = 1·00 cm2

O 23·6 1·27 1·1 89·2 67·8 0·76
P 23·6 1·91 1·1 67·1 55·0 0·82
Q 19·9 2·54 1·2 50·2 42·2 0·84
L=274 cm; λ=125; fy = 310 MPa; As = 1·00 cm2

R 21·4 1·27 1·6 24·1 24·3 1·01
S 20·9 1·91 1·2 21·6 21·8 1·01
T 20·7 2·54 1·1 19·7 19·1 0·97

0·4

0·3

0·2

0·1

0
0 0·1

M: (bt2 fcm)

0·2 0·3

N
: (

bt
 f

cm
)

Short column

Column C1

Figure 7. Load–moment curve for column C1
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Table 6 presents the results obtained for the columns tested by
Kim and Yang. For these 28 columns, Rm=0·95, σR=0·07
and VR=0·07.

Columns tested by Kim and Lee
Kim and Lee (2000) tested 16 columns of rectangular cross-
section under biaxial bending. All columns have a length

L=130 cm. The mean compressive strength of concrete is
fcm= 27 MPa and the yield strength of reinforcement is
fy = 436 MPa.

Table 7 presents the results obtained for the columns tested by
Kim and Lee. For these 16 columns, Rm=0·87, σR=0·04 and
VR=0·05.

Table 3. Columns with square cross-section tested by Tsao (1991)

Column fcm: MPa fy: MPa ex: cm ey: cm Fu,exp: kN Fu,teo: kN Fu,teo/Fu,exp

C1 19·1 545 0·97 2·35 69·0 65·6 0·95
C2 18·6 545 1·80 1·80 57·0 62·7 1·10
C3 29·0 545 3·59 3·59 40·0 44·0 1·10
C4 25·5 421 1·80 1·80 84·8 71·2 0·84
C5 25·5 421 1·94 4·69 47·6 44·3 0·93
C6 25·5 421 0·97 2·35 83·2 73·2 0·88

Table 4. Columns with L-shaped cross-section tested by Tsao (1991)

Column fcm: MPa fy: MPa ex: cm ey: cm Fu,exp: kN Fu,teo: kN Fu,teo/Fu,exp

B2 25·1 434 2·15 4·61 45·6 48·8 1·07
B3 26·8 434 2·69 2·69 57·0 55·3 0·97
B4 26·8 441 3·59 3·59 45·0 43·7 0·97
B5 29·3 441 0·90 0·90 128·2 120·5 0·94
B6 29·3 441 1·80 1·80 71·5 78·6 1·10
B7 29·2 441 1·55 2·01 71·5 81·5 1·14
B8 29·2 441 3·09 4·03 46·8 46·8 1·00

Table 5. Columns tested by Melo (2009)

Column fcm: MPa e1: cm Fu,exp: kN Fu,teo: kN Fu,teo/Fu,exp

Columns with L=300 cm; λ=87
6-3 39·6 0·6 652·0 599·8 0·92
12-3 39·6 1·2 535·0 460·1 0·86
15-3 35·8 1·5 446·5 375·1 0·84
18-3 39·7 1·8 460·5 345·4 0·75
24-3 39·7 2·4 241·0 255·5 1·06
30-3 33·9 3·0 254·8 188·6 0·74
40-3 33·9 4·0 170·2 149·8 0·88
50-3 37·6 5·0 155·0 136·4 0·88
60-3 37·6 6·0 131·0 121·8 0·93
Columns with L=250 cm; λ=72
15-2·5 43·1 1·5 670·4 529·6 0·79
24-2·5 45·8 2·5 360·8 319·2 0·95
30-2·5 41·6 3·0 336·0 268·8 0·80
40-2·5 41·6 4·0 246·0 206·6 0·84
50-2·5 41·6 5·0 201·2 177·1 0·88
60-2·5 43·1 6·0 164·8 156·6 0·95
Columns with L=200 cm; λ=58
15-2 38·5 1·5 662·0 582·6 0·88
24-2 45·8 2·5 456·0 446·9 0·98
30-2 37·2 3·0 317·0 317·0 1·00
40-2 37·2 4·0 294·4 244·4 0·83
50-2 37·2 5·0 232·0 206·5 0·89
60-2 38·5 6·0 198·4 180·5 0·91
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Results for all columns
When considering all 124 columns, the ratio R=Fu,teo/Fu,exp
presented the mean value Rm= 0·94, standard deviation
σR=0·08 and coefficient of variation VR=0·09. Figure 8

shows a histogram obtained for the 124 columns. It is observed
that besides the good accuracy of the results, the model tends
to be conservative, as desired.

Assuming a normal distribution, the fifth percentile is given
by R1 =Rm− 1·645σR=0·81 and the 95th percentile is
R2 =Rm+1·645σR=1·07, so that 90% of the values of R
should be in the range [0·81− 1·07]. The range with 90% prob-
ability of occurrence is shown in Figure 9.

Considerations for the design of
slender columns
The developed model can be used for the dimensioning of
slender reinforced-concrete columns. In this case, it is necessary
to make small changes in the stress–strain diagrams for
materials in order to introduce partial safety factors. The
design strengths for materials are given by fyd = fyk/γs and
fcd = fck/γc, where fyk is the characteristic yield strength of

Table 6. Columns tested by Kim and Yang (1995)

Column As: cm
2 L: cm Fu,exp: kN Fu,teo: kN Fu,teo/Fu,exp

fcm = 25·5 MPa
L4-1 2·53 24 109·5 108·4 0·99
L4-2 2·53 24 109·3 108·4 0·99
L2-1 1·27 144 63·7 62·4 0·98
L2-2 1·27 144 65·7 62·4 0·95
L2-1 1·27 240 38·2 36·3 0·95
L2-2 1·27 240 35·0 36·3 1·04
L4-1 2·53 240 49·0 45·6 0·93
L4-2 2·53 240 47·0 45·6 0·97
fcm = 63·5 MPa
M2-1 1·27 24 179·0 164·7 0·92
M2-2 1·27 24 182·8 164·7 0·90
M4-1 2·53 24 207·7 182·8 0·88
M4-2 2·53 24 204·6 182·8 0·89
M2-1 1·27 144 102·8 98·7 0·96
M2-2 1·27 144 113·5 98·7 0·87
M2-1 1·27 240 45·2 48·4 1·07
M2-2 1·27 240 47·6 48·4 1·02
M4-1 2·53 240 59·6 63·2 1·06
M4-2 2·53 240 60·5 63·2 1·04
fcm = 86·2 MPa
H2-1 1·27 24 235·3 195·3 0·83
H2-2 1·27 24 240·4 195·3 0·81
H4-1 2·53 24 255·8 212·3 0·83
H4-2 2·53 24 257·7 212·3 0·82
H2-1 1·27 144 122·1 111·1 0·91
H2-2 1·27 144 123·7 111·1 0·90
H2-1 1·27 240 54·3 51·6 0·95
H2-2 1·27 240 54·9 51·6 0·94
H4-1 2·53 240 66·6 67·9 1·02
H4-2 2·53 240 64·7 67·9 1·05

Table 7. Columns tested by Kim and Lee (2000)

Column ex: cm ey: cm Fu,exp: kN Fu,teo: kN Fu,teo/Fu,exp

Series RS (λx=22·5; λy=45)
RS0-1 0 4·00 204 186 0·91
RS0-2 0 4·00 206 186 0·90
RS30-1 2·00 3·46 208 196 0·94
RS30-2 2·00 3·46 217 196 0·90
RS45-1 2·83 2·83 266 215 0·81
RS45-2 2·83 2·83 239 215 0·90
RS60-1 3·46 2·00 313 250 0·80
RS60-2 3·46 2·00 295 250 0·85
RS90-1 4·00 0·00 418 372 0·89
RS90-2 4·00 0·00 443 372 0·84
Series SS (λx=45; λy=45)
SS0-1 0 4·00 119 106 0·89
SS0-2 0 4·00 126 106 0·84
SS30-1 2·00 3·46 112 93 0·83
SS30-2 2·00 3·46 104 93 0·89
SS45-1 2·83 2·83 103 91 0·88
SS45-2 2·83 2·83 106 91 0·86
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reinforcement and fck is the characteristic compressive strength
of concrete. According to Eurocode 2 (BSI, 2004), the partial
safety factors are γs = 1·15 and γc = 1·5 for persistent and transi-
ent design situations.

The stress–strain diagram of reinforcement is the same as
shown in Figure 1, with fy replaced by fyd. Two parabola–
rectangle diagrams must be used for concrete, as shown in
Figure 10. The diagram obc, with maximum stress equal to
0·85 fck, is used to calculate the displacements of the column
axis. The diagram ode, with maximum stress equal to 0·85 fcd,
is used to verify the failure by concrete crushing. Since
σc > 0·85 fcd is not allowed, it is possible to work with a single
diagram oade, as indicated in Figure 10. The strain εco corre-
sponding to the stress σc = 0·85 fcd is given by

15: εco ¼ εc2 1� 1� 1
γc

� �1=n
" #

Thus, the stress–strain relations for compressed concrete are
given by

16: σc ¼ 0�85 fck 1� 1� εc
εc2

� �n� �
; if 0 � εc � εco

17: σc ¼ 0�85 fcd; if εco � εc � εcu2

where the stress and strain are represented by their absolute
values.

By employing Equation 9 to calculate the exponent n, the
modulus of elasticity Ecm is replaced by Ecd =Ecm/γcE, where
γcE = 1·2 according to Eurocode 2. The other aspects of the
model remain unchanged.

The model can be easily implemented in existing design soft-
ware by simply changing the subroutine that calculates the
stress in concrete. Equations 9, 15–17 are used, remembering
that Ecm is replaced by Ecd =Ecm/γcE in Equation 9.

Conclusions
This paper presents a non-linear model for the analysis and
design of slender reinforced-concrete columns subjected to uni-
axial and biaxial bending. The model considers both material
and geometric non-linearities, as well as creep effects.
Structural analysis is performed using the finite-element
method. The BFGS iterative method is used to solve the
system of non-linear equations. Columns may have an arbi-
trary polygonal cross-section, including openings. The inte-
grations necessary for the determination of sectional forces are
performed using Green’s theorem.

In the first part of this study, it was shown that the classical
parabola–rectangle diagram, as presented in Eurocode 2
(BSI, 2004), cannot be used for non-linear analysis of slender
columns because it provides incorrect and inconsistent values
for the modulus of elasticity of concrete. This parabola–
rectangle diagram is only recommended for the design of
cross-sections. Eurocode 2 presents a stress–strain relation for
non-linear structural analysis, but it is too complex to perform
explicit integrations using Green’s theorem.

To eliminate this difficulty, a new parabola–rectangle diagram
is proposed to represent the stress–strain relationship for com-
pressed concrete. Thus, the correct value of the tangent
modulus of elasticity at the origin of the stress–strain diagram
is obtained. This modified parabola–rectangle diagram can be
used for non-linear analysis, unlike the original parabola–rec-
tangle diagram of Eurocode 2. It has the advantage of being
simpler than the stress–strain relation for non-linear structural
analysis adopted by Eurocode 2. The use of the new parabola–
rectangle diagram facilitates the integrations necessary to
obtain the sectional forces through Green’s theorem. By intro-
ducing the partial safety factor for concrete and modifying the
strain value corresponding to the maximum stress, this
diagram can be used for the design of slender columns.

The model was used to analyse 124 columns tested by other
authors, with 20 columns subjected to sustained loads and 104
columns subjected to short-term loads. Tests include 95
columns subjected to uniaxial bending and 29 columns sub-
jected to biaxial bending. The theoretical failure load Fu,teo
was compared with the experimental failure load Fu,exp
obtained in the tests. The ratio R=Fu,teo/Fu,exp presented the
mean value Rm=0·94, the standard deviation σR=0·08 and
the coefficient of variation VR=0·09. It is concluded that, in
addition to providing results with good accuracy, the model is
conservative as desired.
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