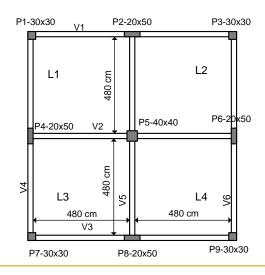
Exemplo de projeto estrutural


Estruturas de Concreto Armado

Prof. José Milton de Araújo

Dados adicionais:

- 1. Todas as vigas possuem seção 20cm x 50cm
- 2. Altura de piso a piso = 2,80 m
- 3. Altura de paredes sobre as vigas = 2,30 m
- 4. Desconsiderar aberturas nas paredes
- 5. Todas as lajes possuem h=10 cm

Planta de formas do pavimento tipo

2

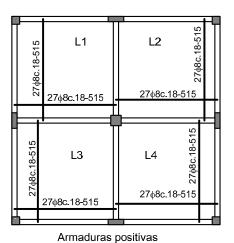
A) CÁLCULO DAS LAJES

Considerar as lajes simplesmente apoiadas e depois adotar uma armadura negativa igual à maior armadura positiva nos vãos, em cada direção.

Vãos de cálculo: lx=ly=5 m

Cargas: peso próprio= $25x0,10 = 2,5 \text{ kN/m}^2$ revestimento= $1,0 \text{ kN/m}^2$ acidental = $1,5 \text{ kN/m}^2$ g= $3,5 \text{ kN/m}^2$; q= $1,5 \text{ kN/m}^2$; p=g+q= $5,0 \text{ kN/m}^2$; po=g+0,3q= $3,95 \text{ kN/m}^2$

Flecha final: W= 15.69 mm


Flecha admissível: Wadm= 20,00 mm OK!

Momentos fletores: Mx=My=5,51 kNm/m

Reações: Rx=Ry=6,25 kN/m

,

Dimensionamento: fck=25 MPa ; aço CA-50; d=7,0cm $As=2,68 cm^2 (\phi \ 8 \ c. \ 18 \ cm)$

L3 L4

Armaduras negativas

27\psi 18-282

6 135 135 6

27φ8c 18-282 135 135

L1

27¢8c.

135

L2

8-282 135

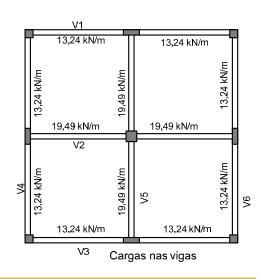
27¢8c.7 6

B) CÁLCULO DAS VIGAS

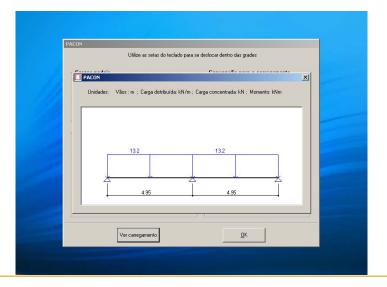
Cargas:

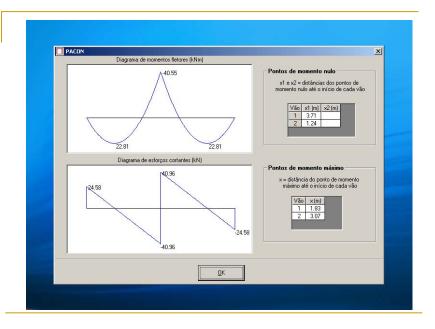
peso próprio:

25x0,20x0,50= 2,5 kN/m


parede:

13x0,15x2,30=4,49 N/m


ação das lajes:

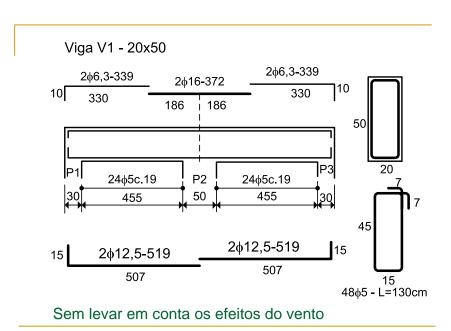

6,25 kN/m (nas vigas externas)

12,50 kN/m (nas vigas internas).

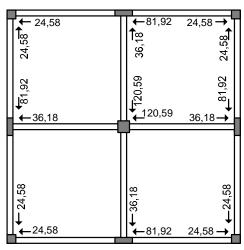
Cálculo da Viga V1:

9

11


Dimensionamento das armaduras longitudinais:

Vão: Mk=22,81 kNm: As=1,64 cm² (2φ12,5 : Ase=2,45 cm²)


Apoio interno: Mk=40,55 kNm: As=2,98 cm² (2φ16: Ase=4,02 cm²)

Dimensionamento dos estribos:

 $Vk=40,96 \ kN: Asw=2,06 \ cm^2 \ (\phi 5c.19cm)$

C) CÁLCULO DOS PILARES

Reações das vigas em kN

Pilar	$\sum R_k$	Peso	F_k (por
		próprio	pavimento)
1	49,16	6,30	55,46
2	118,10	7,00	125,10
3	49,16	6,30	55,46
4	118,10	7,00	125,10
5	241,18	11,20	252,38
6	118,10	7,00	125,10
7	49,16	6,30	55,46
8	118,10	7,00	125,10
9	49,16	6,30	55,46

Tabela 1 – Cargas nos pilares (kN)

Obs: Somando as cargas em todos os pilares = 974,62 kN A área total do pavimento é 104,04 m²

974,62/104,04 = 9,37 kN/m2 (porque as lajes são grandes e não tem paredes sobre as lajes).

14

Nos edifícios residenciais, essa carga é da ordem de 12 kN/m².

Telhado
8° pav
7° pav
6° pav
5° pav
4° pav

3° pav

pav pav • Para determinar corretamente as cargas nos pilares, é necessário calcular as lajes e as vigas do último pavimento (laje de forro) com as cargas corretas (peso de telhado, etc).

13

 Admitindo para essa laje o mesmo carregamento do pavimento tipo, podese determinar as cargas nos pilares ao longo da altura do edifício. Tabela 2 - Cargas de serviço nos pilares (kN)

Pavimento	P1	P2	P5
8	55,46	125,10	252,38
7	110,92	250,20	504,76
6	166,38	375,30	757,14
5	221,84	500,40	1009,52
4	277,30	625,50	1261,90
3	332,76	750,60	1514,28
2	388,22	875,70	1766,66
1	443,68	1000,80	2019,04
Tipo	canto	extremidade	intermediário

Momentos iniciais nos pilares:

1) Pilar P2 (pilar de extremidade)

Carga na viga: p=19,49 kN/m; vão: lvig= 500 cm

Meng=pl²/12=40,60 kNm

rvig=4lvig/lvig=1666 cm³

rinf=rsup=rp=6lp/lp=714 cm³

No pavimento tipo:

$$M_{\text{inf}} = M_{\text{sup}} = M_{eng} \frac{r_p}{2r_p + r_{vig}}$$

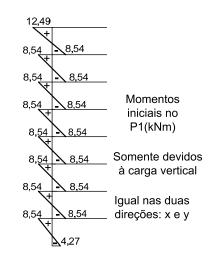
$$M_{\rm inf} = M_{\rm sup} = 9,37 \text{ kNm}$$

No último nível:

$$M_{\rm inf} = M_{eng} \frac{r_p}{r_p + r_{vig}}$$

$$M_{\rm inf} = 12,18 \text{ kNm}$$

9,37 9,37 9,37 Momentos 9,37 9,37 iniciais no P2 (kNm) 9,37 > 9,37Somente devidos 9,37 9,37 à carga vertical 9,37 9.37 9,37


2) Pilar P1 (pilar de canto)

Carga na viga V1: p=13,24 kN/m

lvig= 4,95m

Pilar P1: 30x30

Os momentos iniciais nas duas direções serão iguais.

Verificação da indeslocabilidade horizontal

Rigidez equivalente com modelo de carga concentrada:

Pórtico P1-P2-P3 (2 vezes): Eleq=9.595.047 kNm²

Pórtico P4-P5-P6 (1 vez): Eleq=8.060.049 kNm²

Total: Eleq = $27.250.143 \text{ kNm}^2$

htot = 22,90 m

Fv=7800 kN (da tabela 2)

$$\alpha = 22,90\sqrt{\frac{7800}{27250143}} = 0,38$$

Como <a><0,5 a estrutura pode ser considerada indeslocável (de nós fixos).

Ação do vento:

(usando PACON: módulo Força no contraventamento)

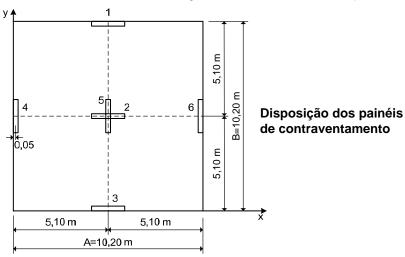


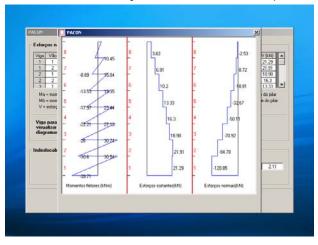
Tabela 3 – Dados dos painéis de contraventamento

Painel	K (kN/m)	x (m)	y (m)	α o
1	2397	5,10	10,15	0
2	2013	5,10	5,10	0
3	2397	5,10	0,05	0
4	2397	0,05	5,10	90
5	2013	5,10	5,10	90
6	2397	10,15	5,10	90

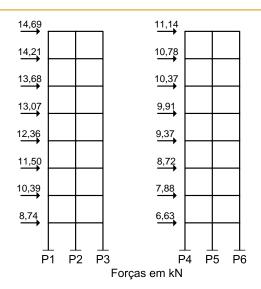
Dados do vento:

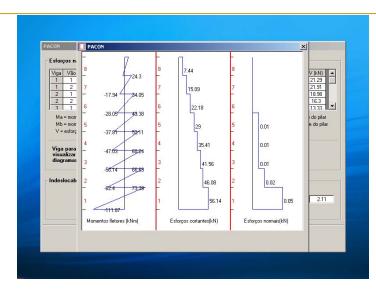
Vo=45 m/s ; baixa turbulência

S1=1,0; categoria IV; classe B; S3=1,0


ea=+-0,075A ; eb=+-0,075B

21


22


Esforços devidos ao vento

(PACON: módulo Esforços devidos ao vento)

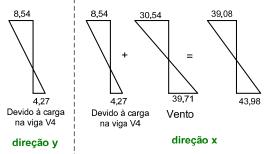
Esforços no P1 (vento segundo direção x)

Esforços no P2 (vento segundo direção x)

- Essses momentos se superpõem aos momentos devidos ao carregamento vertical.
- Os esforços normais se somam às cargas verticais da tabela 2.

Tabela 4 - Cargas de serviço no pilar P1 (kN): vento segundo x + carga vertical

Pavimento	Carga	Vento x	Mínimo	Máximo
	vertical	(+ ou -)		
8	55,46	2,53	52,93	57,99
7	110,92	8,72	102,20	119,64
6	166,38	18,81	147,57	185,19
5	221,84	32,67	189,17	254,51
4	277,30	50,11	227,19	327,41
3	332,76	70,92	261,84	594,60
2	388,22	94,78	261,84	483,00
1	443,68	120,85	322,83	564,53

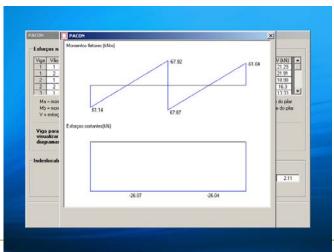

2

Observações:

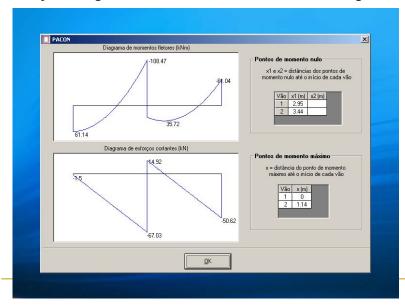
- O pilar P2 fica submetido à flexão oblíqua: Mx devido ao vento e My devido às cargas na viga V5.
- O dimensionamento deve ser feito para os esforços normais máximos e mínimos, adotando-se a maior armadura.

Exemplo Pilar P1 no térreo

Fk=322,83 kN e Fk=564,53 kN


25

27


Momentos iniciais no P1 (kNm)

Esforços na Viga V1 no segundo pavimento (primeira laje), devidos ao vento:

Vento segundo a direção x, da esquerda para direita

Esforços na viga devidos a 100% do vento + 100% da carga vertical

- Rodar também com vento no sentido da direita para esquerda e determinar a envoltória.
- **Observação:** o correto é fazer as duas combinações de cargas como visto em aula.
- Observa-se um grande aumento nos esforços solicitantes e, consequentemente, nas armaduras da viga, além do exaustivo trabalho de cálculo.
- Usar esse edifício modelo para praticar com o PACON e tirar todas as dúvidas, antes de fazer o projeto de graduação (fazer isso nas férias?)